## Linearizing Circuit for Thermocouples

This circuit changes the gain of opamp U1B in four steps or segments. It can be used to get a linear output from most transducers to 1% levels.U1A is a amplifying buffer use it to boost the signal to the required level.

The resistor values i have put are for an imaginary transducer, you have to design them. The buffered input signal is compared to reference switching points by LM339.

Temperature Measurement and Control

LM339 changes the gain resistors of U1B thru the mux switch 4066. JP1 to JP4 can select either amplification or attenuation of signal. The resistor switched by 4066 can be across R1 or R2 based on JP1 to JP4.

You may have to input transducer values into a spreadsheet and draw a graph. Then divide the graph into 5 segments and deduce the switch points and gain.

Learn how to use the AD590 to measure environment temperatures for display, logging or cold junction compensation.

The voltage at the point 1 of R4 will be :Vo=( 1+ ( 10K/22K)) * Vref = 3.63V as nominal Vref is
2.5V.AD590 is a current source which gives 1 uA / kelvin, It is independent of the voltage across the device. you can treat it like a current source or sink or impedance. total voltage across AD590 is 5V as opamp pin 2 is at virtual ground.

Analog Circuits – OpAmp, Signal Condition, Mixed Signal.

This is the way you try to understand the design.

The AD590, here is a constant current sink as cathode goes to -5. The current it sucks away or drains from node pin 2 of OP07 is 1uA/ kelvin. at 0 deg C the current drained is 273 uA at 26 deg C it is 300uA.

You know according to theory that the amount of current entering the node, is equal to the amount of current leaving the node. do not look at voltages now, look at the currents. the AD590 drinks 273uA from Node pin 2 of OP07 at 0 deg C. Now no current can come from opamp OP07 pin 2 as resistance is in giga ohms and leakage in pico amps. now the pot R5 and resistor R4 are just in series and connected to 3.63 V as established earlier. The TL431 is a shunt regulator with reference and has a low impedence. Now the R5 + R4 combination should not load the TL431, that is not the case as 3.6 / 10K = 360uA .

By varying R5 pot you can pump 3.6 / 10K = 360uA down to 130uA when R5 is max into node pin 2 of OP07. This pot will be calibrated with AD590 in ICE to give a 0 mV output of the Op07. When calibrated R5+R4 pump 273 uA into node pin 2 of op07. this is sucked away by the AD590 which is draining 273uA at 0 deg C. This leaves the pin 2 at zero potential as currents leaving = currents entering.

Now to understand the opamp functioning.

The pin 2 of opamp is a 0 potential as calculated above and pin 3 also is at zero pulled down by R7. Now as both inputs are at same potential the output of opamp also is zero. The feedback resistors R1 and R2 will carry no current as both their ends are at 0. the Vout is now 0 mV and AD590 is on a block of ICE and opamp is stable.

If pin 2 (-) becomes more dominant or positive than pin 3 (+) the output swings negative. If pin 3 (+) becomes more dominant or positive than pin 2 (-) the output swings positive. The opamp on feedback tries to maintain both the inputs at the same potential. This thumb rule can be used to make opamp oscillate, amplify or compute.

Now what happens when the AD590 is removed from the block of ICE. It comes to room temperature say 26 deg C which means 300uA. Now the AD590 demands to draw 300uA from node pin 2 of OP07. The R4 + R5 from 3.6 V can give 273uA as it is fixed, not a uA more. The rest which is 300 – 273 = 27uA leads to a drop in potential at pin 2 and it turns negative. as demand is greater than supply. which makes pin 3 which is at zero more positive than pin 2. ( theory : 0 is positive compared to -1) as pin 3 is more dominant opamp swings positive as per thumb rule. and a current starts flowing thru R1 + R2 till the current reaches 27uA. at this point the extra current 27uA drawn by AD590 is supplied by opamp thru R1+R2. The Pin 2 now comes to 0 as currents leaving = currents entering.

Test & Measurement, Instrumentation

At this point the voltage at opamp output is given by ( R1 + R2 ) * 27uA = 270mV (assume R1+R2 is 10K after calibration) now opamp gives 10mV per deg C.as opamp now is a closed loop control the rise and fall in temperature, results in AD590 current variation which produces a proportional OP07 output.

Now the explanation above is in steps but all that happens in real time in an instant.

## RTD 3-W Mains Power 4-20 mA Transmitter

This is the Photo of a RTD 3-W Mains Powered Temperature 4-20mA Transmitter. The Circuits and PCB are here

RTD PT100 Transmitter and Multiplexer.

Now with new Technologies like Zigbee and Modbus, We can classify Transmitters as shown below. The Measured Parameter Temperature, Flow or Events Has to reach an Intelligent Data Storage and Analysis System. It may just be an Human Operator who jots the data on a Notepad and Turns a Few Dials based on his Experience or an embedded controller. It could even be a Computer Network or a Web Application used by many, like Monitoring the Weather Attributes.

• Analog Transmitters – Like 4-20mA Loop.
• Electrically Isolated Analog Transmitters.
• Transmitters that need to be Intrinsically Safe.
• Digital Transmitters and Optical Interface.
• Wireless Transmitters and TCP-IP.

The job of the transmitter is to take the weak analog measured parameter information from sensor, be close to it, amplify, clean, linearize the signal if required and send strong – error free data over a long distance to an operator or system.

## Diode Thermometer

Measurement Of Temperature – When power transistors are used, they may tend to over heat. Likewise resistors may also overheat in the event of faults or short-circuits. The knowledge of their temperatures may be advantageous. In addition, measurement of temperature constitutes a basic necessity in day-to-day life.

Measuring the temperature of a body, depends upon the establishment of thermo-dynamic equilibrium between the body and the device used to sense the temperature. In practice, this condition is rarely attained since it is difficult to establish complete instantaneous equilibrium. Hence great care must be exercised in choosing a method suited to the problem so that satisfactory conditions for temperature measurements are obtained. Temperature sensors possess thermal characteristics dependent largely on their size and shape and the materials from which they are made. These characteristics affect precise measurements. The introduction of a temperature sensor into a body tends to modify the temperature conditions at that point. In most cases the sensor is connected to a recording instrument by means of an intermediate system, along which the signal is carried. The intermediate system and the recorder may be subject to temperature and other changes. Hence compensating devices become a necessity to reduce or eliminate errors.

The measurement of temperature in our instrument depends on the fact that the forward voltage drop of a silicon diode changes by about – 2 millivolts per degree centigrade. Thus, by measuring the change in forward voltage of silicon diode kept in a temperature probe, the voltage drop can be converted into temperature.

Since this involves the measurement of millivolt level accurately a precision voltage source is needed. This can be conveniently obtained from the 3 pin + 5v voltage regulator. This voltage is tapped using a preset VR6 whose output is used for adjusting the ice bath temperature reading to zero degree. This tapped voltage is fed to the diode in the temperature probe and the other end of the diode is returned to a negative supply of -8v. The negative supply uses a (-8v regulated output from IC 7808 voltage regulator) which has the least variation with temperature. Now, the voltage at the probe point is connected to the input of DPM via function selector switch ST.

The temperature probe can be made by a length of shielded audio cable connected to any type of mini plug and fitted onto the front panel socket SSG/T. The free end of the cable is soldered to the diode. The diode is kept just at the tip of the cable. A miniature glass diode like 1N4148 is preferred. The soldering makes a good fixture at the end of the cable. The meter can thus measure temperatures from 0°C to 150°C continuously and upto 200°C momentarily since above that the cable starts melting.

Epoxy Resin and a used Metal Pen Refill can be used to make a sensor to insulate the cable. The diode must be thermally and electrically isulated from metal tube.

(above text may have ocr and concept errors)