Instrumentation (Page 4)

Measurement of resistor values in circuit configurations are required to be made often, as these might have changed in value due to various tolerance ranges, and hence could be the cause of faults. Likewise the resistance of components used in a circuit, may need to be known. In such cases the measurement of resistance is a must.

Simple Resistance Measurement

The circuit used for measurement of voltage can be modified to measure the value of the unknown resistance. The principle followed is the measurement of voltage drop across the resistance when a constant current flows through it. In the voltage measuring circuit, the unknown resistance is connected to the same input terminals and the switch SR is operated. Then a constant d.c. current from the collector of transistor T I is passed through resistor R16 to the unknown resistance which is grounded. The voltage drop across the unknown resistor is proportional to the value of the resistance as current is maintained constant. This d.c. voltage drop is measured after proper calibration.

For the constant current source a high gain, low leakage, pnp silicon transistor (T1) is required. The range selector switch Rs, which connects the positive voltage to the constant current source enables measurement of resistances in 5 decades i.e. 200 ohms, 2 kilo-ohms, 20 kilo-ohms, 200 kilo-ohms and 2 mega-ohms.

According to the range of resistance being measured the switch Rs also selects the decimal point of the displays in the DPM. A resistor R limits the current to the decimal point of the LED displays. Transistor T I is biased by resistor R17 and variable present VR5. As this preset sets the value of current in transistor T1, it has to be adjusted for calibrating the resistance range. Once the calibration is over, the resistance value is directly read on the DPM.

(This is scanned-ocr from my earlier file, some mistakes corrected – delabs)

Studying current measurement is a prerequisite for many of the measuring techniques. The current parameter mainly specifies the power consumption in a circuit, given the value of resistance. It is found convenient to measure current rather than voltage for knowing power output and determining efficiency. It may be required to measure leakages in circuits at certain times. Hence the measurement of current constitutes a priority.

Ammeter and Precision Rectifier

Measurement of DC Current –

The circuit diagram for the measurement of current (d.c. and a.c. modes) is shown aside. For measurement of current switch SI is operated. The switch S-ad is kept in d.c. mode. This enables the current to pass through a shunt circuit consisting of resistors R26, R27, R28, R29 and R 30. The current ranges are provided in 5 decades i.e. 200 micro-amps, 2 milli-amps, 20 milli-amps, 200 milli-amps and 2 amps. An additional current range that can be read upto 20 Amps is also provided. However, for measuring this high current the green terminal provided on the meter should be used. When a current to be measured is fed to the input terminals of the instrument appropriately, a voltage proportional to the current through the shunt resistor is fed into the DPM which measures the d.c. voltage which in turn indicates the d.c. current being fed.

Measurement of AC Current –

In case of a.c. measurement, the switch S-ad is kept in a.c. mode. The a.c. current path is similar to the d.c. current path in the shunt resistor. However the voltage tapped across the shunt resistor is fed into IC2 which is a buffer. The output of IC2 is fed to IC3 through capacitors C10 and C11. This IC is an operational amplifier acting as a precision rectifier. The output of IC3 is fed to the input of the DPM for measuring the a.c. current being fed to the input terminals. It can be seen that the current measurement is similar to the voltage measurement except that the attenuator chain is replaced by the shunt resistor circuit.

(This is scanned-ocr from my earlier file, some mistakes corrected – delabs)

This was a Beta Hfe and Vce Measuring Instrument used in Incoming Inspection of Power Transistors made by me 16 years back.

Transistor Beta Tester

Custom Built Test Instruments

I designed and built many custom “engineered” Test Instruments. They were not prefect, as only one or two were fabricated. That means it will be costly to produce such instruments. It is just like tooling, you have to make some numbers to recover costs, or price it very high to compensate for the wastages and iterations.