• Tech Ads

Battery Backup Supply

This is a 9V power supply which will work even on power failure. It uses a rechargeable battery and regulators. A transformer with 15-0-15 AC volts output is required.

From my Power Electronic Circuits

Battery Backup Supply

In the first regulator U1 the output is lifted up by 1.4V and in the second regulator U2 by a resistor divider. In the second regulator the voltage across resistor R3 is 5V, so the current is 5V / 1K = 5mA this adds to the quiescent current of 5mA from the regulators ground terminal and flows into the resistors R1 and R2 in parallel which form 404 ohms, 10mA thru 404 ohms is 4V. So the output will be 5 + 4 = 9V. Note that the charge and discharge paths of the battery are separated with diodes.

Simple Millivolt Source for Calibration

This is a modification of a mV Source that can be whipped up easily. You could use a DPM or Multimeter to read the output. The ability of this circuit to perform well depends on the quality of all the MFR resistors and the MultiTurn Pot. Use a Bourns 10T Pot.

Good Soldered Joints, Keep all Resistors and temperature sensitive parts from Transformer and Regulators. Keep Ripple in power supplies low, no EMI tolerated. If you have problems, make a Battery Powered Unit. Shield well in case you are in a Electrically Noisy environment.

Millivolt Source In this link see at bottom this circuit millivolt source, pdf.

I have put a better offset null, OP07 has around 75uV offset error which may show as +/- 1 count error on 4 1/2 DPM 19999 counts. You can skip it if you are using a 3 1/2 digit DPM as the error will not show, even it 4 1/2 it may be upto 2 counts only.

R9, P4 and R10 are for balance and offset as you said you can use it that way. (old circuit)

C7 can be a low leakage plastic cap, even a tantalum electrolytic is ok, aluminum electrolytic may cause a very small error.

Q1 can be any npn that can take 100mA current, do not use RF devices, 2N2222 is best.

If you use a DPM protect DPM inputs with clamping diodes or zeners or an error in bread-boarding may send +/- 12V to DPM and it may be damaged. Some DPMs come with protection like DMMs. use the circuit in del2003.pdf in analog section to make a 4 1/2 DPM.

Also in 2000mV range do not short outputs as the Q1 may get damaged, and in 200mV and 20mV range the output impedance is 10 ohms which is good for calibrating any high input impedance instrumentation like a process indicator etc. loading with 100K 10K will cause error. Most instruments are very high impedance so it is fine.

Resistance measurement with Current Source – DMM

U3 LF 356 is used as a constant current source (sink as the current is negative). R4, R5, R7 and R9 set the four resistance ranges by changing the constant current in decade steps. R2 is for calibration of resistance range. The A-B digital control of 4052 selects the range.

Resistance measurement – DMM Project

Let voltage current and resistance sockets be separate and of different color or use a high voltage electrical rotary switch or relays if you want the same sockets switched. D1, D2 and R8 are to ensure that the FET can be turned off, as the opamp swings from +/- 3.5V only, with some FET it needs to be tweaked.

Resistance measurement - DMM Project

When you keep the current constant, the voltage across a resistor is directly proportional to the Resistor Value. This can be scaled to gat a usable reading on a Digital Voltmeter.

Analog Buffer and Inverter Switching – DMM Project

Here the 4053 selects or routes the voltage, current or resistance measurements to the A-D converter or display. It is selected with the mode selection when you want to measure Volts, Amps, Ohms and AC-DC. Some have to be polarity inverted and some signals just buffered this is selected and done by this circuit according to the digital control.

Now U1 OP07 circuit is a Buffer unity gain and low offset, U2 circuit is unity gain but polarity of output is opposite of input. D1-D2-R3 form a AND gate to select diode-buzzer test mode. The digital selection of 4053 Analog-Switch does not produce any errors in the analog-switching of even mV signals. But it works best at +/- 7.5V dual supply pin-16 is +7.5V, pin- 8 is digital ground and pin 7 alone should go to -7.5.

Analog Buffer and Inverter Switching

Analog ground can be same as digital ground, or the switched signals must be within +/-5V of digital ground. The switches should not carry any current and should be buffered at the output by FET opamps 1-Tera-Ohm. Then alone measurements are ok, as the switches have ohmic resistance.