Test-Measurement (Page 4)

With these circuits you can make an insulation tester going upto one tera ohm (2 Tera ohm max). hence currents will be in pico amps, great care required in design. Also 1000 Volts DC is generated which can cause injury. take great care. the above circuit is for the advanced instrumentation hobbyist only, do not try it at home.

The parts list which is not in the circuit is listed below, the circuit is 15 years old. but you may get some idea on high resistance measurement.

IC7, IC9 – NE555 – Timer IC
IC8 – LM723 – Voltage Regulator

The above list is from my memory, hence it may be wrong, i have forgotten this circuit, this circuit was scanned by a hp photosmart and resized and optimized by irfanview. also note the technology may be obsolete, but basic idea is still the same today.

Insulation Tester power supply

Theory of Operation.

IC7 555 as an Astable chops the DC with T2 NPN transistor. TR2 was a Russian U Core High-Freq Transformer. The secondary was insulated with mylar, layer to layer and impregnated in Mica-Lacquer or varnish. The 723 Chip along with T1 is The closed loop regulator which changes the DC which is chopped.

The high voltage is attenuated and that is the feedback to 723 chip which by comparing to a reference, controls the output. The diodes and caps are in series to withstand 1000V and above.

Insulation Tester or Teraohm Meter with Polarization Index

This was designed, keeping in mind, that sometimes we have few components available and you could not carry your DMM somewhere, but you have to make some instrument for a quick need with what is available.

Analog Dial AVO Amps-Volts-Ohms meter

IC3 LM555 is to generate -5V from 9V. That reminds me of a story, In 1986 while i was studying BE electronics i got a chance to work part-time in a company that sold-serviced imported instruments, it was called trans-marketing. They were the agents for Racal-Dana, Genrad, Data I/O and so many more. Here i came across a Book called CMOS Hot Ideas of Intersil. I had a chance to observe, build and learn some things here. The ICL7107 circuit was the most fascinating, I also read the books of National Semiconductor here.

Analog Dial AVO Amps-Volts-Ohms meter

In those days small firms used to make DPM’s digital panel meters with 7107. In 1987 when i got a oppurtunity to design a DPM for a firm, I put the 555 clock in place CD4009 clock shown in intersil, to derive the -5.

This CircuitĀ  is a DPM or digital panel meter. It has a analog bar graph display and a 3-1/2 digit digital display. ICL7107 is used in the 200mV configuration.

U4A opamp LF353 amplifies the 200mV Full scale input to the level required for the LM3914 display circuit. D13-D14 are clamping protection diodes. Adjust P1 trimpot for a reading of 1000 counts when a 100.0 mV signal is fed at Vin. Adjust R8 trimpot to get the 5th ledĀ  to just turn on at 100mV input.

Analog and Digital Voltmeter using ICL7107

A combination of digital and analog display is helpful for quick decision making. Analog indicates even from a distance the process dimension.

Human Brain understands analog better. The digital is required to note down and record values for determining a setpoint or performance of a system.

Sometimes a analog recorder with a ink-pen plot against time is a very good way of process analysis. Many systems are better studied using graphs not tables and lists of numbers. A Computer based data-logger gives greater power to this methods. You can measure and plot graphs of various types and at different points and for much longer periods.

This is a part of my Build a DMM or Digital Multi Meter

Here is a easy to read ‘Analog’ Millivoltmeter. Just like the Moving Coil Voltmeter, but does not have that resolution. This gives a easy indication of process progress or parameter magnitude from a large distance. A bargraph is easy on decision making too, compared to a digital readout.

How this Works ? – The analog input in mV – millivolts is fed to R18, RC reduces Noise and the Zener Clamps protect. The LF353 FET Opamp offers High Impedance as a Non-Inverting Amplifier, which nullifies measurement burden, Remember the Moving coil voltmeter loads the measured circuit, causing sizable errors. Then they invented the Vacuum Tube Voltmeter to solve this issue. An FET voltmeter is near ideal, they ought to have inventing this first.

The Zeners and C3 Plastic cap should not leak, even if they do it should be in Pico Amps. Get quality stuff and do a neat job putting them together. To master this leakage and other aspects, try building an Electrometer with CA3140. Another Measurement challenge is uV Microvolt measurements, you will be faced with new glitches in connectors and PCB due to thermocouple effects and contact resistance. A soldered joint near a hot resistor will set up enough thermal gradients and create many thermocouples all over the board. Try to measure 1 Microohm with a 10 Amp pulse or 1 A DC. You will learn many things. Connectors have a craze for the Precious Metal, they act funny if they do not have enough Gold on em.

Once i observed, very low voltages or circuits with nominal voltages but very low currents, cannot break a near invisible layer between the plates of a good connector. A sub-micron coat of corrosion, dust or even some organic deposit, was forming a dielectric layer which was impervious to uV and pA. A good cleaning with a volatile organic solvent solved the problem but messed up other plastics nearby.

Millivolt Meter using a LM3914 LED Dot Display

Millivolt Meter using a LM3914 LED Dot Display. – This circuit is a part of my Build a DMM or Digital Multi Meter

Here is a Millivolt Source i built for Calibration in the early days. It uses only CMOS Digital and Mixed Chips from Intersil and CD40xx Series.

Millivolt Source

Later i tried a unit with 8748 part of the code in my uC section. This is with Ramp-up and Ramp-down using only two buttons. This works even now, The support below is an HRC Fuse Holder made of Phenolic or Epoxy Resin. The mV Terminations are on Top.

This is a LED Analog Meter, This can be used as a Resistance Meter and Low Impedance Voltmeter for Battery Levels. To measure battery voltage, the R5-R12-R17 etc. part of the Reference Resistor Divider Network can be modified to suit. Shown here is for 4 LEDs, Use Three LM324 for 12 or More LEDs and Cascade as shown.

Resistance Measurement Analog LED Meter

This cannot Measure Voltage levels from High Impedance Sources, will work for Battery Voltage Tests. To make it into a Continuity tester. R27 must be a short and R23 5 Ohms. The Black probe should have a Built in Resistance of 2 Ohms. If you want it to be a dedicated voltmeter, remove R3, The Probe has to be a 10X Attenuator with 10M Ohm and The Resistor Divider Steps in 100mV per Step. The R27, R23 etc. is 20K. A Leakage Tester a Mains Voltage Monitor are other possibilities. Use LM3914 for a easier solution. A nice book for your Design Library – Measuring Circuits By Rudolf F. Graf

This is easy to rig millivolt source for field calibration or troubleshooting of 4-20 mA current loops. Here a Darlington pair is used for current amplification which reduces the Ib error as gain is very high.

Millivolt Source - Field Callibration Current Loop

A rotary switch selects, 4-12-20 mA Preset points. A Bourns multi-turn wirewound Pot can also be used with a digital dial. Enclose in a dust proof handheld box. Read more on process calibration.

Here is a current source you can build for resistance measurement. When the current is held constant, you know as per Ohm’s Law the Voltage across Resistor is proportional to Resistance value.

Precision Current Source for Resistance Measurement

The supply is +12 and -12, The total voltage across R6 + R7 is 24V. Then 24V / 120K = 0.2mA. The voltage across R6 is (10K * 0.2mA) = 2V. The same is reflected across R5 in this feedback configuration. That means Q3 is a 2V / 1K = 2mA source. If my calculations are right.

There are sources of errors in this circuit. The temperature variation of all resistor values, which is 100ppm for general calculations in 1% MFR. Let us assume you use OP07 which is close to an ideal opamp, but for this application it is not needed. The second error is Ib, the base current of Q3 which may be 0.2mA / Hfe(200) = ~ 1 uA. Then the variation of Hfe, Vcc and Vdd w.r.t. Temperature, should not be overlooked. Use LM7812 and LM7912.

So you see, design knowing that all these components are not ideal. Leakage currents, Humidity, EMI, Stray Capacitance and Inductance and much more. It is just like, even when the motor is fixed firmly on the machine, some parts Vibrate and create a Noise due to Mechanical Resonance. So Build and evaluate your design in the real environment, to learn.

Discover how resistors are color coded – Interactive Java Resistors Tutorial.