Power-Supplies (Page 3)

I will just explain part of this circuit. D9 and D10 provide a low cost -1.4 from -5 V. This is needed to reach near 0.00 for LM317 Min. setting. An LED also can be used with proper bias. Note that there is a Temperature Coefficient in ppm, see The Unusual Diode FAQ. but it may not matter upto 8 bits accuracy.

TIP2955, TIP3055 (NPN), TIP2955 (PNP) Complementary Silicon Power Transistors. It is a Darlington, that means good current gain. See Darlington transistor – Wikipedia. When current in R1 10E goes more than 50mA a voltage of 50mA X 10E = 500mV is applied across Emmiter-Base junction. So lower than 500mV no bias the tap is turned off, 500mV-700mV the tap starts turning on depending on type of transistor. The transistor is like a water Tap. So TIP2955 carries the major current burden thru the load allowing LM317 to do the decision making when to turn-on or off. It is analog control, it is not On-Off but linear-proportional. The LM317 is very cool as the burden is passed off to TIP2955 who will need a heatsink to keep going and deliver the power you want.

WorkBench Dual Power SupplyPut the filter caps appropriately. The Hum-Noise will be filtered. The cap after the regulator should be a small guy. The main filter cap after the Bridge can be as big as your cabinet or budget.

If you build it and wire it without designing a PCB, then make all wiring and connection very sound. The test of this ability you can know easily, If your project stops working after the last screw of the cabinet is tightened, Then we need to improve.

This is a SMPS Circuit application very close to the Application Note in the book SGS Motion Control Application Manual. This worked well. Read about SG2525 – SG3525 – PWM SMPS Regulator Chip.

Some Notes Related to the Project

  • In main circuit do not link different grounds.
  • Main circuit can be used both for 110 AC and 230 AC
  • Ferrites are partial conductors use proper insulation before winding.
  • For main transformer TRX2 use split bobbin for good/safe isolation.
  • Epoxy coated toroids have to be further insulated before winding.
  • Line of isolation between primary and secondary circuits should be explicit.
  • Primary components like Q1, Q2 tabs R5, R6 etc can give shock take caution.
  • Each main module is 500W and can be used in parallel for more current.
  • Q1 and Q2 should have appropriate isolated heatsinks TO220 type 50sq cm
  • Schottky diodes D5, D6 should have heatsinks TO220 type 100sq cm.
  • Diodes D5, D6 eg D83004 are TOP3 packages are used 2 in parallel.
  • For 200W and above R2=0.1e 5W in the main circuit fusible ceramic.
  • C10, C11… Add 4.7uF 100v more in parallel to reduce ripple.
  • C13, C14 can be 250V for better safety margin.
  • TRX1 SEC1 and SEC2 dot polarity is anti-phase if same phase danger!!

100kHz Half Bridge Convertor - SG3525
Zoom Image

Magnetics Design

All Transformers Isolation 1kV PRI To SEC / SEC To SEC / PRI,SEC To Core. Use Yellow Mylar Tape Insulation or better for all. Vacuum Impregnate all Magnetics in Epoxy or Varnish. All Power Tracks on PCB reinforce with Copper Braid.

TRX1 Mosfet Drive Transformer

T25.0 MGQ-5L Hitachi – Type Torroid – 100khz Signal

  • PRI1 20 Turns #22 Awg
  • SEC1 9 Turns #22 Awg
  • SEC2 9 Turns #22 Awg

486T250-3C8 Ferroxcube – SEC1 And SEC2 Antiphase

TRX2 Stepdown Invertor Transformer

EC52 Siemens/Hitachi – Can Be ETD/EER Cosmo Ferrites

  • PRI1 22 Turns 2 Layers (44 Turns) – 2* #16 Awg(18 Swg) In Parallel.
  • SEC1 4 Turns Ct Copper Strap 0.01″ * 0.8″ Copper Strap

Coper Strap/Ribbon used, cause Hi-Freq Skin Effects, PRI 2 Wires paralleled for same reason.
EC52-3C8 Ferroxcube Phillips

Trx3 Current Feedback Trx

T25.0 MGQ-5L Hitachi – Type Torroid – 100khz Signal

  • PRI1 1 Turn 4 Amps Max
  • SEC1 20 Turns #22 Awg CT.
  • Ceter Tap 10T-CT-10T

486T250-3C8 Ferroxcube

L1 Series 60A-80A Inductor

Type EC/ETD/EER EC42 Hitachi – Air Gap In Inductor Core Both Sides
100khz Power IF30-3C8 Ferroxcube – 6 Turns 4*#12 AWG In Parallel

4 Wires Of 12 AWG Twisted & Wound For 6 Turns (Use Less AWG For Less I)

TRX5 50hz Transformer Small

  • PRI1 & PRI2 115v
  • SEC1 24V 0.2A
  • JP2 2-3 Short 230V
  • PRI1 & PRI2 In Parallel For 110V
  • JP1 1-2 Short 230V 2-3 Short 110V


This is A 10mH Common Mode Filter

The Reference Application on ST Half Bridge Convertor – SG3525

PCB Layout

The PCB of module will be added later, if i locate it. It is small and be designed easily.

When a Inverting Opamp Configuration is at a steady state, we say the Inverting Input is at a Virtual Ground. That means it is at 0V w.r.t to the dual power supply ground, but it cannot drive or draw any current. It is at a high impedance, but still at 0V. When you buffer this 0 V, you get a low signal ground for a opamp supply.

Opamp Supply on Buffered Virtual Ground

This gnd. can sink and source in a couple of mA. You can use it with low power opamp circuits for portable battery operated devices. This creates a virtual +/- 6 V dual supply from a 12V battery. This may be needed in cases where some instrumentation opamps need the negative supply or your design demands a measurement around zero. You may get a more loadable ground using a Power Opamp, i have not tried. The above circuit gnd cannot be used as a return path for LED’s or Relays. You can drive these, between VCC-VDD, but translate levels to drive them.

A Center tap 50Hz Step Down Transformer with two diodes is used to get a train of Positive Sine Pulses at 100Hz which is applied to Q6 base via R51. 2N2646 is a unijunction transistor(UJT) in a TO-18 metal package. The control voltage or voltage proportional to error is fed to R56-Q3, The UJT drives a pulse transformer which provides isolation from the Load which the SCR bridge is controlling. This phase angle control gives a near Linear closed loop control for a SCR bridge which may be used in Electroplating or a Preregulator of a big power supply.

2N2646 based Voltage controlled SCR Pulser

This is a Regulated 0-30 V DC Power Supply manufactured by me in small numbers, 0-30V 5A and 5V -5A. It had a Switching Preregulator. This keeps the Vce across Transistor Bank at the Back of Instrument, at the lowest possible level, in order to keep them Cool. When Vce and Ic both are more in a Power transistor it will get heated more, then the efficiency of power supply is low.

Variable Regulated Power Supply

The Output had both Constant Current Control and Constant Voltage Control. The CC control is also a Short circuit protection. The Output was protected from outside voltages damaging output circuits even when equipment is switched off. The back panel is a finned anodized black aluminum heat sink with many transistors.

I looked for the circuits to scan them, i could not find it. I made-n-sold quite a few of them years ago. All of them work well even today as i over-rated most components. The cabinet was Steel for EMI-RFI Immunity, it was painted with Stipple Matt Powder Coating, the Cabinet maker had just learnt to give such a finish to his boxes.

Read more

Study these applications at IRF Applications and ST Application Segments.

This circuit shows the voltage doubler working with a 555. LM555 has good drive 200mA, both Vcc and Gnd.

555 has the advantage of having a high drive as well as being a Mixed Design, Analog Programmable chip. That may be a High Title for such humble a chip.

It has the capability of a Mini ADC due to its VCO function. It could form even a simple switching supply. Power Line Modems have been designed using this chip.

Timers, Modulators, Trip Relays and even a Timer for The Humble Bread Toaster. Musical circuits, Piano and Metronome Galore, it drives Speakers directly.

The Star of what we used to Know as Chip as IC. Too small today in the days of ASIC and FPGA. But ideal for Education of Electronics and Simple Real times Solutions.

Every electronic gadget primarily needs a D.C, power supply to energize it. It also forms the basic requirement for any constructional project. consequently there is a need to obtain multiple voltage values for cost reduction, convenience and compact arrangement for all the above applications

List Of Components For Power Supply.

1. Transformers

X1-6-0-6 (500 ma), X2-12-0-12 (500ma)

2. Semiconductors

IC6-7805, IC7-7808, IC8-7908, D1 to D10-IN4007, D11 and D12 – 12v, 1W, Zener

3. Resistors.

R1 and R2 – 100E 1/2 W CFR

4. Capacitors. C 40v

C5 and C8 – 1000 Mfd , C1 – 2200 Mfd, C5 and C7 – 0.1 Mfd, C9 to C12 – 100Mfd

5. Miscellaneous

F1-250ma, N1-Neon, 3-Pin Mains Chord.

Multi Output Instrument Power Supply


The required D.C. power supply is usually obtained by means of a transformer. It is also possible to have transformer­less power supplies. Though the elimination of the transformer makes the circuit compact, economical and simple, also facilitating quick assembly and built in short circuit protection, certain drawbacks creep in. These power supplies are useful only for low current applications. Special safety precautions ? are to be followed while using them. Physical contact should be strictly avoided, since the output terminals are not isolated from A.C. mains supply.

This obviously necessitates the use of a transformer. By suitable modification it is possible to obtain multiple/ fractional dual voltages from a transformer. Different not-so obvious voltage values can also be obtained from the transformer by rectification circuits. The output so obtained from a transformer secondary is unregulated. For good load regulation, the internal impedance of any power supply should be as low as possible. The regulation can be improved either by resistor zener method or series regulator method.

However, the three-terminal regulators greatly simplify the power regulation problem. These regulators need no external components. They employ internal current limiting and thermal shutdown which make them tough. For simplicity, compactness, convenience and accuracy the use of three­ terminal regulators is ideal. These IC voltage regulators are freely available in various ranges both positive and negative. A functional schematic of a three terminal regulator is shown in the datasheet. It can be seen that the device is a complete regulator, with built-in reference, error amplifier, series pass transistor and protection circuits. The protection circuits include current limiting, safe area protection to limit dissipation in the series pass transistor and thermal shut down to limit temperature.

Low power IC voltage regulators of the 78L series used in our measuring instrument are now so cheap that they represent an economic alternative to simple zener-npn stabilisers. In addition they offer the advantages of better regulation, current limiting/short circuit protection at 1000 mA and thermal shunt down in the event of excessive power dissipation. In fact, virtually the only way in which these regulators can be damaged is by incorrect polarity or by an excessive input voltage. Regulators in the 78L series upto the 8v type will withstand input voltages upto about 35v, whilst the 24v type will withstand 40v. Normally, of course, the regulators would not be operated with such a large input-output differential as this would lead to excess power dissipation. All the regulators in the 78L series will deliver a maximum current of 1000mA provided the input-­output voltage differential does not exceed 7v. Otherwise excessive power dissipation will result, causing thermal


Two transformers have been used to step down the voltage from 230-250v a.c. mains input. One of the transformers produces an output of 6-0-6v at the secondary terminals. This output is fed to a full wave rectifier and a capacitive filter. The filtered output is fed to IC6 which is a 3 pin voltage regulator which gives a regulated output of + 5v. This is used to activate the DPM circuit. It is also fed to the temperature network as a precision voltage reference source.

The other transformer produces an output of 12-0-12v at its secondary terminals. The centre tap is grounded like in the previous case. The other two terminals of the secondary are fed to a bridge rectifier constructed using diodes. The rectified output is filtered by using capacitor C5 and C6 fed to IC7 and IC. The IC7-8 which is are 3 pin voltage regulators gives an output of ±8v. These two voltages are fed to the signal generator. The -8v source output is fed to the temperature network, also as voltage reference. It is also necessary to produce a +12v and -12v supply for application to operational amplifiers. This can be conveniently done by means of 12v zener diodes. The output of the bridge rectifier is clamped to +12v and -12v respectively using two zener diodes. The zener output is fed to the operational amplifier supply terminals. Since the supply to

the operational amplifiers need not be very efficiently regulated to + 12v, the use of zener diodes proves economical.

For the testing of electronic components a voltage of above 50 V is required. This can be achieved by means of a voltage quadrupler circuit. It consists of four diodes and four electrolytic capacitors. The secondary ungrounded terminal of the 12-0-12v is connected to the quadrupler circuit. The output of the quadrupler circuit is 68v with respect to ground.

The two transformers can be controlled by the power supply switch PS 1 The switch also controls a neon lamp, which lights up once the transformer supply is on. The instrument is prevented against short circuits-excessive voltages by fuses. When the a.c. power supply exceeds beyond 250 volts resulting in any overload or damage, the fuse F1 blows out thus saving the rest of the circuit within the instrument.

The a.c. power is drawn from a 3 pin plug connected to a cable of 1000 mm to activate the instrument. The ground terminal in the 3 pin plug is earthed to the chassis, while the other two terminals are connected to the primaries of the two transformers.


D7 one end should be grounded.

Power supply part of the mesureall instrument i built 20 years back, ocr errors may be there, like I – 1 and 0 – O, other errors also uncorrected, reference textbooks, appn notes, datasheets

Reference Resources and Extra Reading