• Tech Ads

0-1V to 4-20 mA Converter

This two opamp circuit converts analog voltage signals to current (sink) signals in a proportional manner. Current signals are more immune to noise and cross talk, hence long wires can be used. Voltage Signal to Current Signal Analog Converter.

Ensure +5/-5 dual supply for chip TL062 IC3. Gnd is common ps ground, let grounds radiate from ground plane in one side of PCB. R3-R8 is an attenuator that may need to be designed or modified.

0-1V to 4-20 mA Converter

In output R23 is for protection from shorting of +5V supply, R23 can also go to an unregulated or external. supply upto 24V DC which is referenced to this circuits gnd. More voltage more distance.

Q2 is the current control device, and R22 50E is the shunt for taking a sample of current. 4-20mA in the output (provided suitable load is connected) means 200mV- 1000mV across 50E shunt. This is fed to close loop control system of IC3a inverting pin.

An opamp on this type of feedback tries to drive the output in such a way, so as to maintain both the inputs at same level.

Mini RTD Pt-100 Three Wire Transmitter

If there is 1V at pin 3 and no current is flowing pin 2 is at 0V so output goes positive and drives Q2. this results in a flow of current till a 1V builds across shunt, if it exceeds then output of opamp falls This reduces drive to transistor and hence current reduces. That is the part of V to I conversion with open collector output.

Now we need 200mV to 1000mV to get 4-20mA 4mA is good for 0 as low level measurements are more noise prone. that is the reason 4mA and not 0mA.

Now we need to convert 0-2 V to 0.2 – 1.0 V using IC3B. R14 is a representation of that 200mV offset set by R16 pot. the opamp IC3B adds both the input and this offset to get 200mV to 1000mV. for that the opamp IC3B is an analog computer, summer, subtracter. Try to now calculate the values for that.

Simple Mains Voltage monitor

This Circuit helps in the monitoring of mains supply voltage. It does not use a isolation step down transformer. This has to be constructed only by skilled people with knowledge of safety requirements.

C1 0.47uF can be brought down to 0.22uF for low LED currents, use high efficiency ultra bright LEDs.C1 should be 440V AC or 630V DC plastic axial yellow, polyester, polycarbonate, polypropylene, metalized film.

R3-R6-R9-R14-R18 resistor divider determines the LED turn on or threshold switch points, 10M for hysteresis.

Mains Voltage and Power Circuits

Adjust R16 preset with a log Plastic tweaker to get the led D2 to turn on when input voltage is at 220V AC. This has to be done after PCB is put in a sealed fire-retardant-plastic or epoxy box. drill a hole in box for plastic tweaker.

LM324 – Low Power Quad Operational Amplifier

This Circuit is Not a Tested Design. It is an Idea for study
Simple Mains Voltage monitor LM324
Warning : This Circuit is Mains Operated without Isolation Transformer and will give lethal electric shock if touched when the circuit is turned on. Test circuit only with DC 9V Bench Power Supply to try it out. Do not use 230V AC.

Simple Thermocouple Amplifier

The OP07 is in a non inverting amplifier so as not load the mV of thermocouple, the zeners are to protect circuit if junction contacts heaters or the earth gets broken.

Thermocouple and Pt-100 RTD

The RC is to filter out 50Hz pick up in thermocouple wires if near heater wiring and also reduces reading jumps when high current three phase contacter operates.

Simple Thermocouple Amplifier

The Pull-up 10M is when a Thermocouple breaks the output of circuit will be max. This is open sensor protection, in case Thermocouple breaks, Required only in industrial temperature controllers for protection. This means it will be 3.5V which should make you turn off the heater in software.

J and K Thermocouple with 4-20 mA

The other opamp is for further amplification as OP07 is set to around 30 gain and offset has to be adjusted with R9. If OP07 is kept in > 100 gain it may be difficult to adjust offset of 75uV. If you need very high gain in the first stage use some instrumentation amplifier or chopper stabilized amplifier. I am not very sure. This is the very basic Thermocouple Amplifier used as a front end signal conditioning in Process Control.

Precision Attenuator for Digital uC Control

When Instruments are designed a analog front end is essential and also as most equipment have digital or microcontroller interface the analog circuit needs to have digital access. The Circuits DACT0008 and DACT0009 are both useful in building instruments which have digital control.

Precision Attenuator with Digital Control

The Circuit DACT0008 is a programmable attenuator and the digital control can be a remote dip switch, a CMOS Logic Output like the A-B-C-D outputs of a decade counter, or an I/O port of a uC like 80C31.

The heart of the circuit is the popular OP07 OpAmp with Ultra Low Offset in the inverting configuration, 4052 a CMOS analog multiplexer switch enables the gain change, the innovation of the circuit is that the on resistance ( around 100 ohms) of 4052 switch is bypassed so that no error is introduced by its use.

The resistors used R1 to R6 can be 0.1% 50ppm if you will use a 3 ½ DPM i.e. + /- 1999 counts ( approx. 11 bit ), but for 4 ½ DPM ( approx. 14 bit ) you may need to have trimpots2 in place of R3, R4, R5 & R6 gain selection resistors to properly calibrate to required accuracy but for testing or trials use 1% 100ppm MFR resistors but the errors will be around 1%.

Precision Attenuator with digital control

b. Output

Output connect to DPM 7107/7135 or any other A/D Convertor or OpAmp Stage. Use a buffer at output if output has to be loaded by a value less than 1Meg. Use an inverting buffer if input leads have to have polarity where gnd is -In. See DACT0009 for details.

c. 4052 CMOS Switch

The 4052/51/53 Analog Multiplexers have an on Resistance of around 100E the highlight of the circuit is that the CMOS on resistance comes in series with the opamp output source resistance, which produces no error at output.

Digital Control Options

A and B can be controlled by I/O port of uC, like 80C31 so that the uC can Control gain. A and B can be given to Counters like 4029/4518 to scroll gain digitally. A and B can be connected to DIP switch or thumbwheel switch.