Analog Level by BCD Thumbwheel Switch

BCD Thumbwheel Switch is used to input-set data in digital form, this can be read by digital circuits, uC and uP systems and PLC-SCADA Interfaces.

Temperature Measurement and Control

In the early transition of analog to digital, before uP became acceptable, Digital systems without uP were made, it even had printers, RAM and displays. The uP systems were coming in, uC had not yet come and uP systems had to still win the confidence of the Prudent Industrial Design Engineer.
The drawbacks of uP based systems used in Computers, in those days were.

  • Power Consumption was very high, needed SMPS.
  • Many chips, a CPU had a Retinue of many chips.
  • Large Board, Double or Multi Sided due to Bus.
  • Fussy, Hangs on minor Power Glitches or Resets.
  • Needs Firmware Development and Tight Testing.
  • Investment in all these areas, Tools and Manpower.

These made Industrial Automation with uP a challenge. CMOS digital and mixed devices and custom application devices were more easy to implement and affordable.

Analog Level by BCD Thumbwheel Switch

The coming of Low power CMOS uC changed everything and embedded systems became smaller and robust. These were packable in DIN standard and DIN Rail Mounting enclosures.

Coming back to inputting digital data. CMOS uC and Ni-Cd Battery backed up RAM with keyboards made thumb-wheels and other methods less attractive for digital data inputs. Then the Li-Ion Battery, Flash Memory in Combination with Application Specific uC and SOC have made inputting, retaining digital data very easy and affordable.

Continue reading “Analog Level by BCD Thumbwheel Switch”

Battery Level LED Indicator

This LED Indicator uses a LM339, a quad comparator. LM339 can work on single or dual supplies, it has a open collector output that can drive 15mA, low power consumption. The circuit is an untested design but it should work.

Mains Voltage and Power Circuits – Similar circuits for Mains Voltage Monitoring.

There are many better circuits in the various circuit archives i have linked on the front page, you just have to look around. When you measure the open circuit voltage of a battery with a high impedance DMM (10M), the value may be a bit misleading. Apply a dummy load to bleed the battery a bit so that proper readings can be taken on Load. The load below is a 100 ohms wire-wound fusible ceramic resistor which will heat a bit when you test 12V batteries.
Battery Level LED Indicator

Theory of Operation.

R16 a 5W ceramic wire wound bleeder or dummy load. R15 is a part of an attenuator for obtaining ranges. D2 is a protection clamp diode. R10-D1 forms the 5V reference for comparators. Then an attenuator obtains 1.2, 1.4, 1.6, 1.8 V steps for each comparator. This circuit is similar to Audio Level meter or VU meter circuit.

Comparators in Interface Circuits

The comparator compares the battery sample voltage to the fixed reference step. If ‘+’ pin is more positive than ‘-‘, or is ‘+’ is more dominant, then output goes floating ‘open collector’, so No LED light . But if ‘-‘ is more dominant the output transistor of comparator goes low impedance or saturates or turns ‘ON’. But only spec current can be switched, do not compare with electrical switch ‘ON’. Also on a dual supply 0V is more dominant or positive compared with -12V, even though it appears -12V is a big number. The direction of current is what decides, all measurements are relative.

Thermocouple Amplifier Standard

Thermocouple is the most common sensor in Industrial Temperature Measurement. The Signal Conditioning involves Cold Junction Compensation and High Gain DC Amplification. The output of a Themocouple is in millivolts.

The OP07 is a low offset 75uV opamp, here it is used to amplify the output of a Thermocouple, the gain of this stage is high. The zeners are to protect any high voltage at input zapping the opamp.

Thermocouple Amplifier Standard

The Resistor R6 limits the current. The zeners should be low leakage or use clamping pull-up and pull-down diodes to +5 and -5 respectively.

The RC low-pass filter formed by R6 and C2 reduce the mains hum or 50 Hz pickup of long thermocouple cables laid close to high current heater wiring. R1 is a offset null use or add if required. R11 is gain control of OP07. The TL072 is a FET input opamp used here as a summing amp.

Blind Dial Proportional Temperature Controller

Adding one more inverting amp with some gain to the output of this circuit can give you a 1-5V suitable for ADC or PC analog I/O cards. C1 also serves to filter, it is an integrator here. It suppresses EMI and RFI from motors, contacters etc., R13 sets an output value for 0mV input.