delabs (Page 14)

Product Design - Industrial Automation and Instrumentation. -

Here the 4053 selects or routes the voltage, current or resistance measurements to the A-D converter or display. It is selected with the mode selection when you want to measure Volts, Amps, Ohms and AC-DC. Some have to be polarity inverted and some signals just buffered this is selected and done by this circuit according to the digital control.

Now U1 OP07 circuit is a Buffer unity gain and low offset, U2 circuit is unity gain but polarity of output is opposite of input. D1-D2-R3 form a AND gate to select diode-buzzer test mode. The digital selection of 4053 Analog-Switch does not produce any errors in the analog-switching of even mV signals. But it works best at +/- 7.5V dual supply pin-16 is +7.5V, pin- 8 is digital ground and pin 7 alone should go to -7.5.

Analog Buffer and Inverter Switching

Analog ground can be same as digital ground, or the switched signals must be within +/-5V of digital ground. The switches should not carry any current and should be buffered at the output by FET opamps 1-Tera-Ohm. Then alone measurements are ok, as the switches have ohmic resistance.

R6 is the Shunt thru which the current to be measured passes. F1 fuse is to protect shunt. D1-D4 ensures that the current flow is not broken if the shunt blows. The Ammeter is always used in series in a circuit.

OP07 is used here as a digitally controlled amplifier as the voltage offset error is around 75uV. 4052’s digital controls A-B set the range by selecting R1, R2, R3, R5 for the digital code at A-B. The inverting amplifier changes the gain and four current ranges are got. The output of this circuit has to go to a buffer and cannot be loaded directly. R8 is offset trim at very high gains, it has to be adjusted for a zero output of opamp for zero current measured.

Current Amp digital control - DMM Project

Rf and Ri are 0.1% MFR, if costly, use bourns 10T trimpot or a difficult way – use series parallel combination and scratch 10% part of resistor network to increase value.

Read more at my – Current Shunt Amplifier with digital control – del20014

LF356 opamp FET input is in a inverting amplifier configuration here. R4 + R5 make up Ri each 1/4 W MFR withstands 250V so both will take upto 500V. Use more in series for higher voltage withstand with care in PCB layout and cabinet insulation.

Voltage Attenuator Amp – DMM Project

Rf is selected by a digital value at A-B inputs of 4052, that way R1, R2, R3, R6 are selected for four ranges giving various attenuation levels. The important thing in this circuit is the on resistance of 4052 of 100 ohms comes in series with the output resistance of opamp, so the output is taken before the cmos switch . The output of this digital attenuator should not be loaded and should be buffered before use.

Gain = Av = Rf/Ri and Vout = -(Rf/Ri) * Vin

Voltage Attenuator Amp - DMM Project

Rf and Ri are 0.1% MFR, if costly, use bourns 10T trimpot or a difficult way use series parallel combination and scratch 10% part of a network R to increase value.

This is the third circuit that you will need to build a Simple Benchtop DMM with no Microcontroller.

Here the U1D and U1B 4093 acts like a de-bouncing circuit for the push keys. The 4029 counts up scrolling to binary values 00, 01, 10, 11 for the four ranges.

The binary value of 4029 is decoded to decimal by 4028 in order to light four LEDs which indicates the range or mode on the front panel. When any of these pushbuttons are pressed and held, the nand schmitt 4093 clocks to scroll the range continuously. The binary output of these counters control CMOS switches 4052 which are analog multiplexers.

DMM range and AC-DC mode Logic

The DPM or DVM gives a readout of an Analog Value or process. The Analog reading we obtain from a Circuit Measurement Jig represents some real world parameter.

In a multi-parameter instrument like DMM, the measurement jig functions and the analog signal routing is done by ganged range selection switches.

Read More here DMM range and AC-DC mode Logic

This is a simple charger circuit which will work for a light load like a DMM, the Battery can be a sealed maintenance free battery of 9V-2AH or better. The circuit will work best if the Unit is powered on many times daily on regular use, else battery will drain down.

The 555 Astable is used to generate a AC signal from which a negative voltage is generated, A 79L05 which is a low power TO92 equivalent of 7905 a negative -5 volts regulator is used as -5 volts load is less. A TO220 7805 is used for the +5V supply.

Power supply with battery backup - DMM

Many dual supplies are derived from one DC Source. A SMPS solution is the best. A Series Regulator is simple to troubleshoot in comparison to Switching Types, there is no EMI-RFI too.

Power supply with battery backup – DMM

This simple circuit is ok only for Low Current gadgets, Whereas SMPS is green and efficient. In SMPS a greater care for Product Safety is required. In a Linear Supply with Step-Down Mains-Frequency Transformer. The Transformer is the only place, where you look into safety the most. In SMPS it is the PCB, the feedback components and also The High-Frequency (200 kHz) Mains Ferrite Transformer.

This a part of a complete Benchtop DMM that you can build to learn the internals of a Digital MultiMeter. This is oriented towards learning the measurement aspects and the protection of input circuits.

U2A opamp LF353 is used here as a constant current source, R10-D13-D14 is for protection in case you measure voltage in the ohms range. U1 4052 helps digitally select four different currents, the currents pass thru the unknown resistor to be measured and an voltage developed across the resistor is measured.

U2B is a buffer which passes on the voltage measured to U5A for inversion of polarity as current source is a negative current (current sink). U5B amplifies to the level required for the LM3914 display circuit. U7 555 is used as a de-bouncing for switch SW1 so as to advance counter 4029 to change the range of resistance measurement.

Build a DMM - LM3914 Analog display

Use any FET input dual opamp, TLO72 will work but LM358 will cause error as it is transistor input..

D1, D12 and R8 are to ensure that the FET can be turned off, as the opamp swings from +/-3.5V only, with some FET it needs to be tweaked. LF353 is a Wide Bandwidth Dual JFET Input Operational Amplifier.

Build a DMM – LM3914 Analog display

U1A LF353 opamp turns on a buzzer when the voltage at Test + falls very low indicating a short between Test + and Test – or a resistor less than 5 ohms. The R9-R14 divider determines the minimum voltage that can be at Test + for buzzer to just turn on.

The Opamp here is a comparator and R10 10 Meg gives a very small hysteresis so that there is no oscillation at threshold levels, that is when both inputs at same levels.The Zener is for protection and R6 to limit current.

U2A and U1B opamps form a precision rectifier, note that this is not a true RMS rectifier circuit for that see some devices from Analog Devices. When you need to rectify a 200mV AC signal you cannot use a diode like 1N4148 as the diode turns on at 700mV so this circuit is used.

AC conversion and continuity buzzer test

The AC signal measurement is best to do with a True RMS convertor. This Type is able to quantify the Heating power of a AC voltage, includes all harmonics and Noise too.

When i had put the near Obsolete digital circuits online in the late nineties. One person who works in a public institution in the usa, wanted a modification of one of my existing circuits. He had those parts the CD40 Series Logic Chips. He wanted to use only those that he had in his Stock.

I made some modifications and sent it to him, that helped him with his task. These things can be done very easily using the Arduino. One could make a programmable Arduino Timer/Counter with a matching Configuring Software without coding, for such people. Easy and Affordable.

Digital Circuits 2 from delabs

Circuit 1 – Digital Timer Clock With Preset using Thumbwheel switch.

A Thumbwheel Switch has to be used in place of DIP switch shown, just know that 1-2-4-8 nibble (4 bit) should be generated by Thumbwheel switch at preset or jam inputs of 4029.

Use CD4511 if 4513 is not available, but circuit has to be changed a bit around 4511

Circuit 2 – 1 Hz or 1 pps crystal clock using CD4060 and 32768 Hz Crystal.

They have not been tested much… The 4513 control pins 8-4-5-3 connections verify, as i did not get the datasheet.

The circuits will work as the concepts are right, but some tweaks in R C values may be required.
the R C values can only be corrected if you have problem in making it work.

The main problem in the R C values may be related to “the reset at 6 for the tens of seconds and the tens of minutes”.