• Tech Ads

Digital to Analog Converter with uC Watchdog

This is the continuation of the earlier post. Part of 80C39 based Process Controller. In this schematic you can see the Watchdog and D/A Converter.

Digital to Analog Converter with uC Watchdog

My first observation of a very complex watchdog in action was an Agilent(hp) Benchtop Multimeter based on this 8048 family of 1st generation microcontrollers that did not even have a UART among many things.

At that time CMOS was just making an entry and FLASH memory was unheard of. The UV Eprom was the way firmware was set on these systems. These consumed a lot of power. 80C39 was the CMOS one.

The  4040 counter derives a slow clock from the 7555 timer. The counter has to be reset by firmware by periodically sending a reset pulse on port pin P2.7 to say “Alls Well”.

If the firmware or uC “hangs” or due to EMI or Spikes the uC gets into an endless loop. Then the “Alls Well” pulses stop coming. The 4040 keeps counting till Q10 output goes high and resets the uC or can we say Wakes it up rudely.

The D/A converter was used to get the 1-5 V to obtain 4-20 mA control Signal to operate the Actuators like a Motor Drive or Heaters in a Industrial Process control System.

80C39 and MCS48 based Process Controller

The Early Microcontroller : 80C39 is a CMOS Version of 8048 the one that preceded 8031-8051. MCS48 is the set for that, MCS51 is the current set.

Here is an example project for 80C39-8748-8749 microcontroller. This code was written by me, and it works. But the documentation is not complete or may have errors.

80C39 and MCS48 based Process Controller

Process Controller code here 80C39 Code for MCS48 (editable spreadsheet online)

The circuit for these are on this page along with other circuits. This may be difficult to put together now. But the code and hardware is near compatible to 8051 uC. Now there are may types of ADC and uC.

This was supposed to have Analog in and Analog out. Some parts of the circuit may be in the 80C51 page. This has ramp-up and ramp-down settings for the Increment and Decrement buttons. This helps setting setpoint quickly. There is also debouncing for the pushbutton.

Switching Battery Charger with L296

This is a a circuit from my  Power Supplies Section.  There may be some documentation errors in my circuits. If you are used to building and troubleshooting circuits then it is ok.

This circuit is derived from an application note of L296, It is a Power Switching Regulator from ST Micro. U1A is wired as a differential amplifier and U1B a High Gain Comparator. C4 and C5 are parallel for lower ESR. Equivalent series resistanc Fast switching diode used is BYW80.

Switching Battery Charger with L296

L296 is a switch mode power controller here. In this NTE327 or 2N5038 is used to boost the current output. This transistor is both high current and fast switching. U1A, LM358 measures the load current by reading the voltage across shunt R6 and compared to a current limit setting at R14 using U1B to give a load current control. R7-R8 give a voltage feedback for voltage limit.

Use MFR 1% for all Resistors, 33E means 33 ohms, 22K means 22 kilo ohms, 1M is 1 megohm. 10T tp means ten turn trimpot. “Analog Ground” and “Digital Ground” must be linked at power supply only, avoid loops, let grounds radiate from a ground plane. Unused inputs of logic and opamps pull up or down to avoid oscillations and noise.