Instrumentation (Page 4)

Here is a easy to read ‘Analog’ Millivoltmeter. Just like the Moving Coil Voltmeter, but does not have that resolution. This gives a easy indication of process progress or parameter magnitude from a large distance. A bargraph is easy on decision making too, compared to a digital readout.

How this Works ? – The analog input in mV – millivolts is fed to R18, RC reduces Noise and the Zener Clamps protect. The LF353 FET Opamp offers High Impedance as a Non-Inverting Amplifier, which nullifies measurement burden, Remember the Moving coil voltmeter loads the measured circuit, causing sizable errors. Then they invented the Vacuum Tube Voltmeter to solve this issue. An FET voltmeter is near ideal, they ought to have inventing this first.

The Zeners and C3 Plastic cap should not leak, even if they do it should be in Pico Amps. Get quality stuff and do a neat job putting them together. To master this leakage and other aspects, try building an Electrometer with CA3140. Another Measurement challenge is uV Microvolt measurements, you will be faced with new glitches in connectors and PCB due to thermocouple effects and contact resistance. A soldered joint near a hot resistor will set up enough thermal gradients and create many thermocouples all over the board. Try to measure 1 Microohm with a 10 Amp pulse or 1 A DC. You will learn many things. Connectors have a craze for the Precious Metal, they act funny if they do not have enough Gold on em.

Once i observed, very low voltages or circuits with nominal voltages but very low currents, cannot break a near invisible layer between the plates of a good connector. A sub-micron coat of corrosion, dust or even some organic deposit, was forming a dielectric layer which was impervious to uV and pA. A good cleaning with a volatile organic solvent solved the problem but messed up other plastics nearby.

Millivolt Meter using a LM3914 LED Dot Display

Millivolt Meter using a LM3914 LED Dot Display. – This circuit is a part of my Build a DMM or Digital Multi Meter

This circuit is a Parallel interface between 89C52 of Atmel with 7135 of Intersil.  With This circuit you can read analog data of both polarities. You can change the range scale with extra circuits, you can store data on a EEPROM or send them to PC thru RS232 or Comm port.

Using Linux in Embedded Electronic Devices

The Circuit Is Shown for One Anode Drive and one Segment Drive for Display. In similar Fashion connect rest, all 5 anodes and 7 segments and one dp decimal point. The +5 V of 2N2907 and gnd of BC547 must be directly from regulator with a big cap or even a separate supply.

AT89C52 Parallel Interface to ICL7135

Parallel interface is faster that a serial interface.It is more “Real Time” for a given processor and clock speed. The code and accompanying hardware also can speed up the data acquisition.

AT89C52 Parallel Interface to ICL7135 РComplete Page

A single maxim chip can act as a good interface between the uC and Serial Port. You could also do this with Logic chips but correct levels and isolation cannot be achieved, Hence better to use use these interface chips.

These days USB and Wireless Interfaces are being used and Tablet Computers becoming Popular. The Interfacing of the future is “Device Networking” and Wireless may be common.

Here is a current source you can build for resistance measurement. When the current is held constant, you know as per Ohm’s Law the Voltage across Resistor is proportional to Resistance value.

Precision Current Source for Resistance Measurement

The supply is +12 and -12, The total voltage across R6 + R7 is 24V. Then 24V / 120K = 0.2mA. The voltage across R6 is (10K * 0.2mA) = 2V. The same is reflected across R5 in this feedback configuration. That means Q3 is a 2V / 1K = 2mA source. If my calculations are right.

There are sources of errors in this circuit. The temperature variation of all resistor values, which is 100ppm for general calculations in 1% MFR. Let us assume you use OP07 which is close to an ideal opamp, but for this application it is not needed. The second error is Ib, the base current of Q3 which may be 0.2mA / Hfe(200) = ~ 1 uA. Then the variation of Hfe, Vcc and Vdd w.r.t. Temperature, should not be overlooked. Use LM7812 and LM7912.

So you see, design knowing that all these components are not ideal. Leakage currents, Humidity, EMI, Stray Capacitance and Inductance and much more. It is just like, even when the motor is fixed firmly on the machine, some parts Vibrate and create a Noise due to Mechanical Resonance. So Build and evaluate your design in the real environment, to learn.

Discover how resistors are color coded – Interactive Java Resistors Tutorial.

Measurement of resistor values in circuit configurations are required to be made often, as these might have changed in value due to various tolerance ranges, and hence could be the cause of faults. Likewise the resistance of components used in a circuit, may need to be known. In such cases the measurement of resistance is a must.

Simple Resistance Measurement

The circuit used for measurement of voltage can be modified to measure the value of the unknown resistance. The principle followed is the measurement of voltage drop across the resistance when a constant current flows through it. In the voltage measuring circuit, the unknown resistance is connected to the same input terminals and the switch SR is operated. Then a constant d.c. current from the collector of transistor T I is passed through resistor R16 to the unknown resistance which is grounded. The voltage drop across the unknown resistor is proportional to the value of the resistance as current is maintained constant. This d.c. voltage drop is measured after proper calibration.

For the constant current source a high gain, low leakage, pnp silicon transistor (T1) is required. The range selector switch Rs, which connects the positive voltage to the constant current source enables measurement of resistances in 5 decades i.e. 200 ohms, 2 kilo-ohms, 20 kilo-ohms, 200 kilo-ohms and 2 mega-ohms.

According to the range of resistance being measured the switch Rs also selects the decimal point of the displays in the DPM. A resistor R limits the current to the decimal point of the LED displays. Transistor T I is biased by resistor R17 and variable present VR5. As this preset sets the value of current in transistor T1, it has to be adjusted for calibrating the resistance range. Once the calibration is over, the resistance value is directly read on the DPM.

(This is scanned-ocr from my earlier file, some mistakes corrected – delabs)

Studying current measurement is a prerequisite for many of the measuring techniques. The current parameter mainly specifies the power consumption in a circuit, given the value of resistance. It is found convenient to measure current rather than voltage for knowing power output and determining efficiency. It may be required to measure leakages in circuits at certain times. Hence the measurement of current constitutes a priority.

Ammeter and Precision Rectifier

Measurement of DC Current –

The circuit diagram for the measurement of current (d.c. and a.c. modes) is shown aside. For measurement of current switch SI is operated. The switch S-ad is kept in d.c. mode. This enables the current to pass through a shunt circuit consisting of resistors R26, R27, R28, R29 and R 30. The current ranges are provided in 5 decades i.e. 200 micro-amps, 2 milli-amps, 20 milli-amps, 200 milli-amps and 2 amps. An additional current range that can be read upto 20 Amps is also provided. However, for measuring this high current the green terminal provided on the meter should be used. When a current to be measured is fed to the input terminals of the instrument appropriately, a voltage proportional to the current through the shunt resistor is fed into the DPM which measures the d.c. voltage which in turn indicates the d.c. current being fed.

Measurement of AC Current –

In case of a.c. measurement, the switch S-ad is kept in a.c. mode. The a.c. current path is similar to the d.c. current path in the shunt resistor. However the voltage tapped across the shunt resistor is fed into IC2 which is a buffer. The output of IC2 is fed to IC3 through capacitors C10 and C11. This IC is an operational amplifier acting as a precision rectifier. The output of IC3 is fed to the input of the DPM for measuring the a.c. current being fed to the input terminals. It can be seen that the current measurement is similar to the voltage measurement except that the attenuator chain is replaced by the shunt resistor circuit.

(This is scanned-ocr from my earlier file, some mistakes corrected – delabs)

This was a Beta Hfe and Vce Measuring Instrument used in Incoming Inspection of Power Transistors made by me 16 years back.

Transistor Beta Tester

Custom Built Test Instruments

I designed and built many custom “engineered” Test Instruments. They were not prefect, as only one or two were fabricated. That means it will be costly to produce such instruments. It is just like tooling, you have to make some numbers to recover costs, or price it very high to compensate for the wastages and iterations.