Instrumentation (Page 2)

A sample and hold is like an analog memory. If The digital control A is low 4066 switch is open, and when A is high switch is closed. U2B is a buffer so as to ensure quick charging of C1 thru 4066 on resistance of 100E.

Simple Sample and Hold with CD4066

Mixed and Interface Circuits

U2A is a FET input opamp buffer which does not load or drain the cap C1. When A goes high the input analog sample is stored in C1. A has to be high for say 10*1uF*100E = 1mS, so that a proper stable sample is stored. When A is low C1 undergoes very slow discharge as opamp input resistance and 4066 off resistance is in giga ohms. The accuracy of reading Vout falls with respect to time due to leakage currents.

This indicates like LM3914 in dot-mode. It is a drawing i made made to troubleshoot a gadget, around two decades ago. Strangely it had a echo of a design i had made into a 7107 dpm years before that. Now i am scanning all my drawing and notes, useful or not. Clean or with errors. Many Errors = 1 Blunder. Some projects i made have been expensive Blunders. So see them with a skeptic eye, fix them, try them. Thats all for now.

See the Circuit Full Size – Microohm Meter with LED Analog Bar

Microohm Meter with LED Analog Bar

This has a 9V battery power. The 555 spins and a negative voltage for Opamp is created. This is a Low Offset amp of OP37 of Precision Monolithics, Inc PMI an early innovator. This diff-amp amplifies the uV of a 4 wire resistance measurement.

Now the current pump is the 2N2222 you see above the OP37. The FET and 555 do synchronous rectification. The LM324 is the Indicator and Analog to LED Dot-Bar Converter. The probes are Gold Plated, or use solid gold pins if you have them in plenty.

U3 LF 356 is used as a constant current source (sink as the current is negative). R4, R5, R7 and R9 set the four resistance ranges by changing the constant current in decade steps. R2 is for calibration of resistance range. The A-B digital control of 4052 selects the range.

Resistance measurement – DMM Project

Let voltage current and resistance sockets be separate and of different color or use a high voltage electrical rotary switch or relays if you want the same sockets switched. D1, D2 and R8 are to ensure that the FET can be turned off, as the opamp swings from +/- 3.5V only, with some FET it needs to be tweaked.

Resistance measurement - DMM Project

When you keep the current constant, the voltage across a resistor is directly proportional to the Resistor Value. This can be scaled to gat a usable reading on a Digital Voltmeter.

Here the 4053 selects or routes the voltage, current or resistance measurements to the A-D converter or display. It is selected with the mode selection when you want to measure Volts, Amps, Ohms and AC-DC. Some have to be polarity inverted and some signals just buffered this is selected and done by this circuit according to the digital control.

Now U1 OP07 circuit is a Buffer unity gain and low offset, U2 circuit is unity gain but polarity of output is opposite of input. D1-D2-R3 form a AND gate to select diode-buzzer test mode. The digital selection of 4053 Analog-Switch does not produce any errors in the analog-switching of even mV signals. But it works best at +/- 7.5V dual supply pin-16 is +7.5V, pin- 8 is digital ground and pin 7 alone should go to -7.5.

Analog Buffer and Inverter Switching

Analog ground can be same as digital ground, or the switched signals must be within +/-5V of digital ground. The switches should not carry any current and should be buffered at the output by FET opamps 1-Tera-Ohm. Then alone measurements are ok, as the switches have ohmic resistance.

R6 is the Shunt thru which the current to be measured passes. F1 fuse is to protect shunt. D1-D4 ensures that the current flow is not broken if the shunt blows. The Ammeter is always used in series in a circuit.

OP07 is used here as a digitally controlled amplifier as the voltage offset error is around 75uV. 4052’s digital controls A-B set the range by selecting R1, R2, R3, R5 for the digital code at A-B. The inverting amplifier changes the gain and four current ranges are got. The output of this circuit has to go to a buffer and cannot be loaded directly. R8 is offset trim at very high gains, it has to be adjusted for a zero output of opamp for zero current measured.

Current Amp digital control - DMM Project

Rf and Ri are 0.1% MFR, if costly, use bourns 10T trimpot or a difficult way – use series parallel combination and scratch 10% part of resistor network to increase value.

Read more at my – Current Shunt Amplifier with digital control – del20014

LF356 opamp FET input is in a inverting amplifier configuration here. R4 + R5 make up Ri each 1/4 W MFR withstands 250V so both will take upto 500V. Use more in series for higher voltage withstand with care in PCB layout and cabinet insulation.

Voltage Attenuator Amp – DMM Project

Rf is selected by a digital value at A-B inputs of 4052, that way R1, R2, R3, R6 are selected for four ranges giving various attenuation levels. The important thing in this circuit is the on resistance of 4052 of 100 ohms comes in series with the output resistance of opamp, so the output is taken before the cmos switch . The output of this digital attenuator should not be loaded and should be buffered before use.

Gain = Av = Rf/Ri and Vout = -(Rf/Ri) * Vin

Voltage Attenuator Amp - DMM Project

Rf and Ri are 0.1% MFR, if costly, use bourns 10T trimpot or a difficult way use series parallel combination and scratch 10% part of a network R to increase value.

This is the third circuit that you will need to build a Simple Benchtop DMM with no Microcontroller.

Here the U1D and U1B 4093 acts like a de-bouncing circuit for the push keys. The 4029 counts up scrolling to binary values 00, 01, 10, 11 for the four ranges.

The binary value of 4029 is decoded to decimal by 4028 in order to light four LEDs which indicates the range or mode on the front panel. When any of these pushbuttons are pressed and held, the nand schmitt 4093 clocks to scroll the range continuously. The binary output of these counters control CMOS switches 4052 which are analog multiplexers.

DMM range and AC-DC mode Logic

The DPM or DVM gives a readout of an Analog Value or process. The Analog reading we obtain from a Circuit Measurement Jig represents some real world parameter.

In a multi-parameter instrument like DMM, the measurement jig functions and the analog signal routing is done by ganged range selection switches.

Read More here DMM range and AC-DC mode Logic