Flashing Mains Neon Lamp

Here is a Neon Flasher circuit (untested) for a user request at Circuits FAQ. This can be built into a switchboard or a gadget for indicating Live Power.

D1-C1 form a simple half-wave rectifier, The Cap charges to peak voltage and can store charge for a long time if there is no bleeder. So while building it take extra care. This forms a DC supply across C1. C1 is a Plastic High-voltage cap, IN4007 has a 1KV rating, so it is ok for 230V rectifier.

R1 Charges C2 and when C2 reaches 60-80V depending on Neon, the neon breaksdown. C2 Discharges, Neon Recovers, The C2 starts charging again and so on and on. It Oscillates, probably in a Ramp Waveform. But do not use your Scope on this, you will regret it a lot. This is a live circuit and needs a special probe.

“Oh, i will put the probe it in 10M mode” will not do. The ground clip of the probe goes to Electrical Earth which is ‘connected’ to Neutral in the mains wiring. So you put the earth crocodile clip on the live point. There will be flashes and fireworks. So you need to isolate both terminals of scope. Please use your costly equipment with great care.

For the 1 Meg use two 470K in Series for 230V AC, that is safer. The circuit is live, so take precautions. The 0.47 Micro Farad can be increased if you want a slow flash. If the Mains 50/60 Hz Flicker is too much, the 1 uF can be made 2 uF, or use 4 – 1N4007 as a bridge rectifier.

From Schematics of delabs

User Feedback –

R1 of 4.7M and C2 of 0.47uF Works well at 230V AC. Try your own Combination. Less than 1M may damage Neon.

High Resistance Meter

I don’t remember if this circuit worked properly. But a few were made and i might not have shown the modifications that were done to make it work. This was meant to be a portable, low cost, insulation tester for an electrician. If you try it out and debug it it may work well.

A negative voltage is derived by shifting gnd with two diodes, i feel this did not work very well. Two pins of CD4028 pins are also used to boost the reference to get two extra ranges as 4051 has a 100E on resistance.

High Resistance Meter

The 555 clock makes 4029 counter count. But the clock can be clamped to gnd by a TL062 window comparator. The clock is frozen when the input value to comparator pin 5-2 is within a lower limit and upper limit “window” pin 3-6.

The 4029 counter BCD is decoded to decimal by 4028 which drives the LEDs, keep LED drive within 3mA or chip will be loaded. Use high efficiency extra-bright LEDs.

The 4029 BCD also controls a shunt resistor array with CMOS switches 4051. The voltage across shunt is a sample of leakage current. This is compared in the window comparator to freeze the Clock and LED display to give a reading of the leakage current or Insulation Resistance.

Digital to Analog with R2R Ladder Network

This is a R-2R Digital to Analog Converter, It converts a byte (8 bit) to a analog value. It has 256 levels including zero.

This can be used to convert a byte sent from a microcontroller to a analog value like say 1.51 V. At full scale, when all 8 bits are high calibrate to give 2.55 V then ever bit increment is 0.01V, 10mV steps.

Digital to Analog with R2R Ladder Network

If the eight bits inputs are from a counter you then will see a staircase waveform at output, each step being 10mV higher or lower depending on whether the counter is counting up or down.

The accuracy of the analog output depends on the resistor ladder. The OP07 has an offset error of about 70uV only. The 74HCT373 power is derived from LM336 a stable reference so that the D-A is accurate. The 8 bit data can be latched with the 74HCT373 to get a stable analog value for control systems.

Battery Level Indicator

This circuit uses a LM339, a quad comparator. LM339 can work on single or dual supplies, it has a open collector output that can drive 15mA, low power consumption. The circuit is an untested design but it should work. I did it as many searches were made in my webpages with these keywords.

Mains Voltage and Power Circuits – Similar circuits for Mains Voltage Monitoring.

There are many better circuits in the various circuit archives i have linked on the front page, you just have to look around. When you measure the open circuit voltage of a battery with a high impedance DMM (10M), the value may be a bit misleading. Apply a dummy load to bleed the battery a bit so that proper readings can be taken on Load. The load below is a 100 ohms wire-wound fusible ceramic resistor which will heat a bit when you test 12V batteries.
Battery Level Indicator

Theory of Operation.

R16 a 5W ceramic wire wound bleeder or dummy load. R15 is a part of an attenuator for obtaining ranges. D2 is a protection clamp diode. R10-D1 forms the 5V reference for comparators. Then an attenuator obtains 1.2, 1.4, 1.6, 1.8 V steps for each comparator. This circuit is similar to Audio Level meter or VU meter circuit.

Comparators in Interface Circuits

The comparator compares the battery sample voltage to the fixed reference step. If ‘+’ pin is more positive than ‘-‘, or is ‘+’ is more dominant, then output goes floating ‘open collector’, so No LED light . But if ‘-‘ is more dominant the output transistor of comparator goes low impedance or saturates or turns ‘ON’. But only spec current can be switched, do not compare with electrical switch ‘ON’. Also on a dual supply 0V is more dominant or positive compared with -12V, even though it appears -12V is a big number. The direction of current is what decides, all measurements are relative.