Here is a Neon Flasher circuit (untested) for a user request at Circuits FAQ. This can be built into a switchboard or a gadget for indicating Live Power.

D1-C1 form a simple half-wave rectifier, The Cap charges to peak voltage and can store charge for a long time if there is no bleeder. So while building it take extra care. This forms a DC supply across C1. C1 is a Plastic High-voltage cap, IN4007 has a 1KV rating, so it is ok for 230V rectifier.

R1 Charges C2 and when C2 reaches 60-80V depending on Neon, the neon breaksdown. C2 Discharges, Neon Recovers, The C2 starts charging again and so on and on. It Oscillates, probably in a Ramp Waveform. But do not use your Scope on this, you will regret it a lot. This is a live circuit and needs a special probe.

“Oh, i will put the probe it in 10M mode” will not do. The ground clip of the probe goes to Electrical Earth which is ‘connected’ to Neutral in the mains wiring. So you put the earth crocodile clip on the live point. There will be flashes and fireworks. So you need to isolate both terminals of scope. Please use your costly equipment with great care.

For the 1 Meg use two 470K in Series for 230V AC, that is safer. The circuit is live, so take precautions. The 0.47 Micro Farad can be increased if you want a slow flash. If the Mains 50/60 Hz Flicker is too much, the 1 uF can be made 2 uF, or use 4 – 1N4007 as a bridge rectifier.

From Schematics of delabs

User Feedback –

R1 of 4.7M and C2 of 0.47uF Works well at 230V AC. Try your own Combination. Less than 1M may damage Neon.

This circuit shows the voltage doubler working with a 555. LM555 has good drive 200mA, both Vcc and Gnd.

555 has the advantage of having a high drive as well as being a Mixed Design, Analog Programmable chip. That may be a High Title for such humble a chip.

It has the capability of a Mini ADC due to its VCO function. It could form even a simple switching supply. Power Line Modems have been designed using this chip.

Timers, Modulators, Trip Relays and even a Timer for The Humble Bread Toaster. Musical circuits, Piano and Metronome Galore, it drives Speakers directly.

The Star of what we used to Know as Chip as IC. Too small today in the days of ASIC and FPGA. But ideal for Education of Electronics and Simple Real times Solutions.

This is a Simple Voltage Doubler to boost 3V battery voltage to power some low-power 5V circuits. In needs a Clock input with high fan-out. You can use the 74HCT540 in parallel. Work with the Audio frequency range and see.

If you feed a Low Impedance Square wave, like output of 555, which has adequate Source-Sink Punch. to Input A, then it is quite possible you get double the voltage at B on No load.

This is a constant current source using a FET. This is the most simple replacement to series resistor to limit current. The N-Channel FET BF256C can give 15mA current.

Simple Methods

Before you get to use chips, experiment with some methods, which will help you learn about the LEDs better. The first is just One Resistor in series. This is to Limit the max current in a Series LED Chain. If you have a Regulated Supply with a Fixed Voltage, then you can use this method.

Let us take a 12V SMPS, Each HB White LED has a drop of around 3.2 (please see datasheet). If you put 3 LEDs in series it is a drop of 3 X 3.2 = 9.6 V.

12V – 9.6V = 2.4 V. This is the drop across the Resistor, let us keep the current at 20mA for a Long life for LED. Some LEDs will get damaged at 30mA some take more that that. We now have LED Modules which can take even 1 or 2 A.

V/I = R as per OHM. 2.4V/20mA = 120 E or Ohms.

How Hot? W = VI Power in Watts. 20mA x 2.4V = 48mW. This is where you lose the Money. Keep it low, else the Green Goblin will frown. Unless you want LED Lighting to double up as a Room Heater, Nice idea if you are in the Artic.

Now you have a chain of 3 LED with one R, make many such chains and put it in parallel to around 70% of SMPS capacity. If you have 20 Strips of 3 LEDs each, 20 X 20mA = 400mA. You will need a 12V 600mA SMPS .

MOSFET Drive for LED Constant Current

Let us assume, you have a supply that is varying and not stable. Then use a SMPS and Resistor as shown above. Closely matching the LED Chain to the SMPS voltage to keep the heat loss minimum. At Low voltages the above idea may not work. So you can try a MOSFET circuit shown.

You can use Transistors too but The Heat is more, as the Drop is more. When you use batteries, you cannot afford to lose even 0.5V. So the MOSFET is the answer.

This circuit is a nice design idea about LED drive with low voltage and watts burden. In combination with a Joule Thief – and PWM you can make many White LED utilities like Lanterns and Flashlights. PWM is to modulate brightness and also Extend LED Life.

The Essence is The LED has to have a long life, constant current is the answer. The Efficiency has to be High, Switching MOSFET is the answer. For just a LED or Two, you do not need to bother about Efficiency, but Constant Current, No Compromise. Why? Because it is in the Absolute Maximum Rating.

“You do not cross the road, when the light is RED. You do not Drive Faster, than the Speed Limit. You do not Eat, more than you can Digest.You do not Stress the Absolute Max in the Ratings.”

The Elektrik Jedi

Read More

This circuit can be used as a low cost SRAM and Microcontroller-Microprocessor Battery Backup. All the diodes are 1N4148, The diodes prevent battery discharge back to power source. D8 gives a one way path to charge Battery thru R13 which limits current. D4 ensures a one way path of supply to chip when power is present. D5 is backup supply on power failure.

Battery Backup for SRAM or Microcontroller

The chip a real time clock, RAM or Processor can be put to standby or sleep on power failure. If it is not a smart chip then make sure on power failure all outputs of chip are high impedance or floating. do not use any pullups or resistor dividers to Vbat, which is the supply to chip. There should be no leakage path from Vbat, decoupling cap of chip must be plastic.

Microcontroller in Process Control

If you want to use this circuit for short term retention or for CMOS logic chips then you can use a 4700uF Cap in place of battery. This works for many hours but the cap has big footprint on PCB. For long duration use more battery AH Ampere-Hour. Vcc is 5V DC regulated.

The Vbat and Vcc can be monitored with comparator like LM339, this circuit can generate the reset or low battery signals. The power on reset and power down reset can corrupt data on brown outs or black outs or even spikes and EMI. So back up data on flash. For Rapid writing and reading SRAM is better and if write-read cycles are high SRAM is best. But if you need to store values and refer to them like a look-up table flash is better.

Serial Interface a 80C31 to ICL7135

The power fluctuations can hang the chip, so a watchdog chip may be required. The conventional way was the to monitor the keyboard-display scan on a i/o port. If the pulses are coming at the rate you programmed the cpu is alive and kicking and doing its job. If the CPU is taking a nap, then the pulses stop coming and it needs to be reset.

Measurement Of Temperature – When power transistors are used, they may tend to over heat. Likewise resistors may also overheat in the event of faults or short-circuits. The knowledge of their temperatures may be advantageous. In addition, measurement of temperature constitutes a basic necessity in day-to-day life.

Measuring the temperature of a body, depends upon the establishment of thermo-dynamic equilibrium between the body and the device used to sense the temperature. In practice, this condition is rarely attained since it is difficult to establish complete instantaneous equilibrium. Hence great care must be exercised in choosing a method suited to the problem so that satisfactory conditions for temperature measurements are obtained. Temperature sensors possess thermal characteristics dependent largely on their size and shape and the materials from which they are made. These characteristics affect precise measurements. The introduction of a temperature sensor into a body tends to modify the temperature conditions at that point. In most cases the sensor is connected to a recording instrument by means of an intermediate system, along which the signal is carried. The intermediate system and the recorder may be subject to temperature and other changes. Hence compensating devices become a necessity to reduce or eliminate errors.

Diode Thermometer

The measurement of temperature in our instrument depends on the fact that the forward voltage drop of a silicon diode changes by about – 2 millivolts per degree centigrade. Thus, by measuring the change in forward voltage of silicon diode kept in a temperature probe, the voltage drop can be converted into temperature.

Since this involves the measurement of millivolt level accurately a precision voltage source is needed. This can be conveniently obtained from the 3 pin + 5v voltage regulator. This voltage is tapped using a preset VR6 whose output is used for adjusting the ice bath temperature reading to zero degree. This tapped voltage is fed to the diode in the temperature probe and the other end of the diode is returned to a negative supply of -8v. The negative supply uses a (-8v regulated output from IC 7808 voltage regulator) which has the least variation with temperature. Now, the voltage at the probe point is connected to the input of DPM via function selector switch ST.

The temperature probe can be made by a length of shielded audio cable connected to any type of mini plug and fitted onto the front panel socket SSG/T. The free end of the cable is soldered to the diode. The diode is kept just at the tip of the cable. A miniature glass diode like 1N4148 is preferred. The soldering makes a good fixture at the end of the cable. The meter can thus measure temperatures from 0°C to 150°C continuously and upto 200°C momentarily since above that the cable starts melting.

Epoxy Resin and a used Metal Pen Refill can be used to make a sensor to insulate the cable. The diode must be thermally and electrically isulated from metal tube.

(above text may have ocr and concept errors)

Extra Reading –

Measurement of Voltage : –

In testing electronic circuits, Measurement of voltages is important for diagnosing faults and making the circuits work. In circuit diagrams given in equipment manuals, voltages at various points in the circuit are usually marked. A deviation from these values indicates that some component has failed and eventually leads to clues for isolating the faulty areas.

Voltmeter Attenuator Rectifier

Specifications :-

D.C. Voltage
Ranges : +/- 200 mV, 2V, 20V, 200V, 2000V.
Input impedance: 10 mega ohms.
Circuit protection: + 2000V D.C. all ranges.
Over range: 100% to 1999.
Accuracy: +/- 0.5%.

A.C. Voltage
Note: Average responding Ranges calibrated for sine wave.
Ranges: 200 mV, 2V, 200V, 2000V
Input impedance 10 mega ohms.
Circuit protection : 750V r.m.s., all ranges.
Over range: 100% to 1999.

Description :-

As our DPM is capable of measuring only 200 mv full scale deflection, the input voltage in the case of exceeding the range needs scaling down. This is achieved by an attenuator chain.

D.C-voltage -measurement:

The circuit for the measurement of voltage (AC. and DC) from 0.2V to 2000V is as shown. In case of DC voltage measurement, A mode switch selects the input voltage and passes it via an attenuator chain. Resistors R6, R7, R8, R9 and R 10 comprise the attenuator chain. The attenuation chain is in fact the range selection network.

The voltage ranges are provided in 5 decades i.e. 200 mV, 2V, 20V, 200V, and 2000V. The input voltage after attenuation is fed, depending on the range selected by switch Rs, through switch Sad to the DPM input point. The reading on the DPM gives the value of DC voltage being measured.

A.C-voltage measurement:

Most D.C. measurements are made with AC. to DC. converters which produce a DC. proportional to the AC. input being measured and apply this DC. signal to the DPM. Converting the signal to DC at an early stage minimizes the serious errors which otherwise could result from frequency selective circuits.

When an AC voltage is to be measured, the switch Sad is to be operated. This switches enables the signal to pass through a buffer and precision rectifier and then to the DPM input while measuring AC. but passes it directly to the DPM input while measuring DC. So, now the signal after passing via the attenuator chain is fed to IC2. The buffered output of IC2 is fed through the capacitors C 10 and C 1 1 to IC3 (CA 3140-TL071) which is an FET input operational amplifier, acting as a precision rectifier. By means of diode D4 and resistor R24, rectification with gain is obtained for positive half cycles of the AC. signal while the negative half cycles are directly fed back by the diode D3. The half-wave rectified voltage is filtered by the resistor R25 and capacitor C12 combination.

The capacitors C6, C7, C8, C9 connected across resistors in the attenuator chain provide some frequency correction during AC input. The presence of offset voltage in IC3 is to be compensated using variable preset VR2. Preset VR3 is used to correct the reading so as to indicate the true a.c. value of the voltage. On passing the preset VR3, the signal enters the DPM. The reading on the panel gives the value of AC voltage being measured.

Parts List :-

1. Semiconductors
IC2 and IC3-CA3140 or TL071. D1 and D2-5V Zener 1W, D3 and D4-IN4148,

2. Resistors.
a. 1/2 W 1%,
R6-1M, R7-100KE, R8-IOKE, R9-1KE, R10-100E,
R18 and R19-10K, R23-15KE, R24-100 KE, R25-1 KE,

3. Presets.
VR3-220KE

4. Capacitors
C10 and C11 10MFD, C6-47PF, C7-1 KPF, C8-6.8KPF, C9-8KPF, C12-1MFD.

5. Miscellaneous
SSG/T-SOCKET, 51,52-DPDT, A,B,C,D-BNC,SKT, F2-100mA fuse, RS-8P2Wx5 INTERLOCKED. S-2p2wx7 Interlocked