Opamp-Circuits (Page 2)

Thermocouple is the most common sensor in Industrial Temperature Measurement. The Signal Conditioning involves Cold Junction Compensation and High Gain DC Amplification. The output of a Themocouple is in millivolts.

The OP07 is a low offset 75uV opamp, here it is used to amplify the output of a Thermocouple, the gain of this stage is high. The zeners are to protect any high voltage at input zapping the opamp.

Thermocouple Amplifier Standard

The Resistor R6 limits the current. The zeners should be low leakage or use clamping pull-up and pull-down diodes to +5 and -5 respectively.

The RC low-pass filter formed by R6 and C2 reduce the mains hum or 50 Hz pickup of long thermocouple cables laid close to high current heater wiring. R1 is a offset null use or add if required. R11 is gain control of OP07. The TL072 is a FET input opamp used here as a summing amp.

Blind Dial Proportional Temperature Controller

Adding one more inverting amp with some gain to the output of this circuit can give you a 1-5V suitable for ADC or PC analog I/O cards. C1 also serves to filter, it is an integrator here. It suppresses EMI and RFI from motors, contacters etc., R13 sets an output value for 0mV input.

The 0-1V to 4-20 mA Converter published earlier is a current sink, Here is a circuit that is a voltage to current converter but with a current source.

Voltage to Current Source 4-20 mA

You can use a LM358 or LM324. The first opamp is a Voltage to Current with a sink output. That current creates a varying voltage w.r.t the 12V DC supply, this varying voltage is mirrored by the second opamp across the source output resistor. This way a constant current is obtained with a sourcing output. The control elements are small signal high gain transistors. Any suitable equivalent can be used. Even the opamp can be chosen by the precision and application you want.

In this form of feedback. way to understand …. “Op-Amp drives the output to maintain both inputs at the same level” and also the “Output takes the polarity of the dominant input” and lastly “dominant means, more positive”. +5 is more Dominant than +3 or 0 or -2. Then -3 is more dominant than -12. See which is more positive.

Long distance of current loop may need higher voltage and lower source resistor value. Then the output transistor needs to change, if you use 24V DC then that voltage should not reach opamp. Design needs to foresee all possibilities of I/O troubles, as these are wired by a customer, mistakes happen. Hence, Industrial Designs have to be rugged.

This two opamp circuit converts analog voltage signals to current (sink) signals in a proportional manner. Current signals are more immune to noise and cross talk, hence long wires can be used. Voltage Signal to Current Signal Analog Converter.

Ensure +5/-5 dual supply for chip TL062 IC3. Gnd is common ps ground, let grounds radiate from ground plane in one side of PCB. R3-R8 is an attenuator that may need to be designed or modified.

0-1V to 4-20 mA Converter

In output R23 is for protection from shorting of +5V supply, R23 can also go to an unregulated or external. supply upto 24V DC which is referenced to this circuits gnd. More voltage more distance.

Q2 is the current control device, and R22 50E is the shunt for taking a sample of current. 4-20mA in the output (provided suitable load is connected) means 200mV- 1000mV across 50E shunt. This is fed to close loop control system of IC3a inverting pin.

An opamp on this type of feedback tries to drive the output in such a way, so as to maintain both the inputs at same level.

Mini RTD Pt-100 Three Wire Transmitter

If there is 1V at pin 3 and no current is flowing pin 2 is at 0V so output goes positive and drives Q2. this results in a flow of current till a 1V builds across shunt, if it exceeds then output of opamp falls This reduces drive to transistor and hence current reduces. That is the part of V to I conversion with open collector output.

Now we need 200mV to 1000mV to get 4-20mA 4mA is good for 0 as low level measurements are more noise prone. that is the reason 4mA and not 0mA.

Now we need to convert 0-2 V to 0.2 – 1.0 V using IC3B. R14 is a representation of that 200mV offset set by R16 pot. the opamp IC3B adds both the input and this offset to get 200mV to 1000mV. for that the opamp IC3B is an analog computer, summer, subtracter. Try to now calculate the values for that.

This Circuit helps in the monitoring of mains supply voltage. It does not use a isolation step down transformer. This has to be constructed only by skilled people with knowledge of safety requirements.

C1 0.47uF can be brought down to 0.22uF for low LED currents, use high efficiency ultra bright LEDs.C1 should be 440V AC or 630V DC plastic axial yellow, polyester, polycarbonate, polypropylene, metalized film.

R3-R6-R9-R14-R18 resistor divider determines the LED turn on or threshold switch points, 10M for hysteresis.

Mains Voltage and Power Circuits

Adjust R16 preset with a log Plastic tweaker to get the led D2 to turn on when input voltage is at 220V AC. This has to be done after PCB is put in a sealed fire-retardant-plastic or epoxy box. drill a hole in box for plastic tweaker.

LM324 – Low Power Quad Operational Amplifier

This Circuit is Not a Tested Design. It is an Idea for study
Simple Mains Voltage monitor LM324
Warning : This Circuit is Mains Operated without Isolation Transformer and will give lethal electric shock if touched when the circuit is turned on. Test circuit only with DC 9V Bench Power Supply to try it out. Do not use 230V AC.

The OP07 is in a non inverting amplifier so as not load the mV of thermocouple, the zeners are to protect circuit if junction contacts heaters or the earth gets broken.

Thermocouple and Pt-100 RTD

The RC is to filter out 50Hz pick up in thermocouple wires if near heater wiring and also reduces reading jumps when high current three phase contacter operates.

Simple Thermocouple Amplifier

The Pull-up 10M is when a Thermocouple breaks the output of circuit will be max. This is open sensor protection, in case Thermocouple breaks, Required only in industrial temperature controllers for protection. This means it will be 3.5V which should make you turn off the heater in software.

J and K Thermocouple with 4-20 mA

The other opamp is for further amplification as OP07 is set to around 30 gain and offset has to be adjusted with R9. If OP07 is kept in > 100 gain it may be difficult to adjust offset of 75uV. If you need very high gain in the first stage use some instrumentation amplifier or chopper stabilized amplifier. I am not very sure. This is the very basic Thermocouple Amplifier used as a front end signal conditioning in Process Control.

When Instruments are designed a analog front end is essential and also as most equipment have digital or microcontroller interface the analog circuit needs to have digital access. The Circuits DACT0008 and DACT0009 are both useful in building instruments which have digital control.

Precision Attenuator with Digital Control

The Circuit DACT0008 is a programmable attenuator and the digital control can be a remote dip switch, a CMOS Logic Output like the A-B-C-D outputs of a decade counter, or an I/O port of a uC like 80C31.

The heart of the circuit is the popular OP07 OpAmp with Ultra Low Offset in the inverting configuration, 4052 a CMOS analog multiplexer switch enables the gain change, the innovation of the circuit is that the on resistance ( around 100 ohms) of 4052 switch is bypassed so that no error is introduced by its use.

The resistors used R1 to R6 can be 0.1% 50ppm if you will use a 3 ½ DPM i.e. + /- 1999 counts ( approx. 11 bit ), but for 4 ½ DPM ( approx. 14 bit ) you may need to have trimpots2 in place of R3, R4, R5 & R6 gain selection resistors to properly calibrate to required accuracy but for testing or trials use 1% 100ppm MFR resistors but the errors will be around 1%.

Precision Attenuator with digital control

b. Output

Output connect to DPM 7107/7135 or any other A/D Convertor or OpAmp Stage. Use a buffer at output if output has to be loaded by a value less than 1Meg. Use an inverting buffer if input leads have to have polarity where gnd is -In. See DACT0009 for details.

c. 4052 CMOS Switch

The 4052/51/53 Analog Multiplexers have an on Resistance of around 100E the highlight of the circuit is that the CMOS on resistance comes in series with the opamp output source resistance, which produces no error at output.

Digital Control Options

A and B can be controlled by I/O port of uC, like 80C31 so that the uC can Control gain. A and B can be given to Counters like 4029/4518 to scroll gain digitally. A and B can be connected to DIP switch or thumbwheel switch.

When Instruments are designed a analog front end is essential and also as most equipment have digital or microcontroller interface the analog circuit needs to have digital access. The Circuits DACT0008 and DACT0009 are both useful in building instruments which have digital control.
This circuit DACT0009 is similar to DACT0008 but gains of upto 100 can be realized in this configuration, this is useful for signal conditioning of low mV outputs of transducers. The gain selection resistors R3 to R6 can be selected by the user and can be anywhere from 1K to 1M and can also be trimpots for obtaining gains as required by user, the resistor values shown are for decade gains e.g. for an auto ranging DPM.

Precision Amplifier with Digital Control

R1 and C1 reduce ripple in input and also snubs transients, ZD1 and ZD2 Zeners clamp input to +/- 4.7V the input current is limited by R1 lastly C1 and C2 are decoupling capacitors. The OpAmp U3 is used to increase the input impedance so that very low mV inputs are not loaded on measurement, the user can terminate the inputs with a resistor of his choice like 10M or 1M to avoid floating of the inputs when no measurement is being made. U5 is used as an Inverting buffer to restore polarity of the input and U4 is used as a buffer on the output of 4052 because loading it by resistance of value less than 1M will cause an error. An alternative is use R7 = R8 =1M and remove U4 but this may not be ideal. Gains of greeter than 100 may not be practical because at 100 gain itself a 100uV offset will be around 10mV at the output (100uV*100) this can be trimmed using the offset null option in the OP07, connect a trimpot between 1 and 8 and connect wiper to +5.

Precision Amplifier with Digital Control

For better performance use ICL7650 ( not pin compatible ) instead of OP07 and use +/- 7.5V instead of +/-5V supply.

Eight steps for gain or attenuation can be added by using two 4051 and by using Pin 6 Inhibit on 4051/52 limitless steps can be added by cascading many 4051,52,53 as Pin 6 works like a chip select.

Some extended applications of this circuits are……. Error correction in Transducer amplifiers by correcting gain. Auto ranging in DMM. Sensor selection or Input type selection in Process control. Digitally Preset power supplies or electronic loads. Programmable Precision mV or mA sources. PC or uC or uP based instruments. Data loggers and Scanners.