Precision Attenuator for Digital uC Control

When Instruments are designed a analog front end is essential and also as most equipment have digital or microcontroller interface the analog circuit needs to have digital access. The Circuits DACT0008 and DACT0009 are both useful in building instruments which have digital control.

Precision Attenuator with Digital Control

The Circuit DACT0008 is a programmable attenuator and the digital control can be a remote dip switch, a CMOS Logic Output like the A-B-C-D outputs of a decade counter, or an I/O port of a uC like 80C31.

The heart of the circuit is the popular OP07 OpAmp with Ultra Low Offset in the inverting configuration, 4052 a CMOS analog multiplexer switch enables the gain change, the innovation of the circuit is that the on resistance ( around 100 ohms) of 4052 switch is bypassed so that no error is introduced by its use.

The resistors used R1 to R6 can be 0.1% 50ppm if you will use a 3 ½ DPM i.e. + /- 1999 counts ( approx. 11 bit ), but for 4 ½ DPM ( approx. 14 bit ) you may need to have trimpots2 in place of R3, R4, R5 & R6 gain selection resistors to properly calibrate to required accuracy but for testing or trials use 1% 100ppm MFR resistors but the errors will be around 1%.

Precision Attenuator with digital control

b. Output

Output connect to DPM 7107/7135 or any other A/D Convertor or OpAmp Stage. Use a buffer at output if output has to be loaded by a value less than 1Meg. Use an inverting buffer if input leads have to have polarity where gnd is -In. See DACT0009 for details.

c. 4052 CMOS Switch

The 4052/51/53 Analog Multiplexers have an on Resistance of around 100E the highlight of the circuit is that the CMOS on resistance comes in series with the opamp output source resistance, which produces no error at output.

Digital Control Options

A and B can be controlled by I/O port of uC, like 80C31 so that the uC can Control gain. A and B can be given to Counters like 4029/4518 to scroll gain digitally. A and B can be connected to DIP switch or thumbwheel switch.

Precision Amplifier with Digital uC Control

When Instruments are designed a analog front end is essential and also as most equipment have digital or microcontroller interface the analog circuit needs to have digital access. The Circuits DACT0008 and DACT0009 are both useful in building instruments which have digital control.
This circuit DACT0009 is similar to DACT0008 but gains of upto 100 can be realized in this configuration, this is useful for signal conditioning of low mV outputs of transducers. The gain selection resistors R3 to R6 can be selected by the user and can be anywhere from 1K to 1M and can also be trimpots for obtaining gains as required by user, the resistor values shown are for decade gains e.g. for an auto ranging DPM.

Precision Amplifier with Digital Control

R1 and C1 reduce ripple in input and also snubs transients, ZD1 and ZD2 Zeners clamp input to +/- 4.7V the input current is limited by R1 lastly C1 and C2 are decoupling capacitors. The OpAmp U3 is used to increase the input impedance so that very low mV inputs are not loaded on measurement, the user can terminate the inputs with a resistor of his choice like 10M or 1M to avoid floating of the inputs when no measurement is being made. U5 is used as an Inverting buffer to restore polarity of the input and U4 is used as a buffer on the output of 4052 because loading it by resistance of value less than 1M will cause an error. An alternative is use R7 = R8 =1M and remove U4 but this may not be ideal. Gains of greeter than 100 may not be practical because at 100 gain itself a 100uV offset will be around 10mV at the output (100uV*100) this can be trimmed using the offset null option in the OP07, connect a trimpot between 1 and 8 and connect wiper to +5.

Precision Amplifier with Digital Control

For better performance use ICL7650 ( not pin compatible ) instead of OP07 and use +/- 7.5V instead of +/-5V supply.

Eight steps for gain or attenuation can be added by using two 4051 and by using Pin 6 Inhibit on 4051/52 limitless steps can be added by cascading many 4051,52,53 as Pin 6 works like a chip select.

Some extended applications of this circuits are……. Error correction in Transducer amplifiers by correcting gain. Auto ranging in DMM. Sensor selection or Input type selection in Process control. Digitally Preset power supplies or electronic loads. Programmable Precision mV or mA sources. PC or uC or uP based instruments. Data loggers and Scanners.

Voltage to Current Convertor using LM723

his Circuit converts a voltage control output from a Process Controller to be converted into a Current Control if the AC-Drive or Valve needs a Current Control Signal.

Significance of Current Loop 4 to 20 mA Standard

Voltage to Current Convertor using LM723

This is a three wire voltage to current loop converter. The 1-5 V DC is attenuated and fed to pin 5 LM723 opamp section which tries to maintain the same voltage at pin 10 across the 10 E, thereby producing a open collector constant current sink proportional to the 1-5V input. By trimming the attenuator you can scale-calibrate 1-5V input to 4-20mA output for looping many instruments in series, like a controller, recorder or PLC. With a supply voltage upto 24V, three instruments can be looped. The connection to pin 6 is required to convert 0-1 input to 4-20mA.

All the transmitter circuits can be seen here. Industrial Process Control Circuits

This circuit was designed by me in the eighties, the 555 was for negative supply, The whole thing went into the anodized cast aluminuim head of a sensor.

How 4-20mA Works

Using Thermocouple with DMM or DVM

In the circuit, use only metal film resistors (MFR) of 1 per cent tolerance, as this is an instrumentation application. Power supply should be a stable +5V, -5V supply, for which one can use 7805 and 7905 regulators.

The inputs TC+ and TC- terminals should go to a 4-way barrier terminal block, the 2 extra terminals are used to mount TH1 Cu thermistor. This forms an isothermal block, which is good enough.

A simple way to make a TH1 Cu thermistor, is to take a 1 Meg-ohm 2W resistor as a former and wind 2 meters of 46 SWG enameled copper (Cu) wire (5.91 ohm/meter) over it. This gives a 12-ohm value. Terminate wire ends on resistor leads.

Thermocouple Temperature using DPM or DMM

Test and Calibration –

For calibration, you will need a DMM-DPM and a milli-volt source (as shown in the Fig.). First connect source to terminals TC+ and TC-, then set source to 0.00 mV (verify with DMM for zero). The output across +out and -out (use DMM) terminals must be mV representing the room temperature (RT). For example, if RT is 30° C (use a glass thermometer) then +out should be 30mV at 0mV input. Adjust VR1 till 30mV is read at +out terminal. This is ‘zero cal’.

Digital gain control of Opamp.

The gain of U1 can be controlled by a digital binary 1248 nibble at ABC. The gain at digital 000 is unity or 1 and the gain at various stages are set by 4051.

Precision Attenuator with Digital Control – delabs

There are eight different gains as the steps of gain resistor network is chosen by 4051. The on resistance of 4051 channel around 100E gets added to U1 pin 2 internal impedance.

Digital gain control of Opamp

Auto ranging 4-1/2 Digit Digital Voltmeter – delabs

You can use separate resistor networks with trimpots for each channel if you require but keep the networks total burden on U1 pin 6 to around 10K, not less than than. You can use this to set the gain of a amplifier with the help of a microcontroller.

Linearizing Circuit for Thermocouples

This circuit changes the gain of opamp U1B in four steps or segments. It can be used to get a linear output from most transducers to 1% levels.U1A is a amplifying buffer use it to boost the signal to the required level.
Linearizing Circuit for Thermocouples

The resistor values i have put are for an imaginary transducer, you have to design them. The buffered input signal is compared to reference switching points by LM339.

Temperature Measurement and Control

LM339 changes the gain resistors of U1B thru the mux switch 4066. JP1 to JP4 can select either amplification or attenuation of signal. The resistor switched by 4066 can be across R1 or R2 based on JP1 to JP4.

You may have to input transducer values into a spreadsheet and draw a graph. Then divide the graph into 5 segments and deduce the switch points and gain.

Simple Sample and Hold with CD4066

A sample and hold is like an analog memory. If The digital control A is low 4066 switch is open, and when A is high switch is closed. U2B is a buffer so as to ensure quick charging of C1 thru 4066 on resistance of 100E.

Simple Sample and Hold with CD4066

Mixed and Interface Circuits

U2A is a FET input opamp buffer which does not load or drain the cap C1. When A goes high the input analog sample is stored in C1. A has to be high for say 10*1uF*100E = 1mS, so that a proper stable sample is stored. When A is low C1 undergoes very slow discharge as opamp input resistance and 4066 off resistance is in giga ohms. The accuracy of reading Vout falls with respect to time due to leakage currents.