Precision Attenuator for Digital uC Control

When Instruments are designed a analog front end is essential and also as most equipment have digital or microcontroller interface the analog circuit needs to have digital access. The Circuits DACT0008 and DACT0009 are both useful in building instruments which have digital control.

Precision Attenuator with Digital Control

The Circuit DACT0008 is a programmable attenuator and the digital control can be a remote dip switch, a CMOS Logic Output like the A-B-C-D outputs of a decade counter, or an I/O port of a uC like 80C31.

The heart of the circuit is the popular OP07 OpAmp with Ultra Low Offset in the inverting configuration, 4052 a CMOS analog multiplexer switch enables the gain change, the innovation of the circuit is that the on resistance ( around 100 ohms) of 4052 switch is bypassed so that no error is introduced by its use.

The resistors used R1 to R6 can be 0.1% 50ppm if you will use a 3 ½ DPM i.e. + /- 1999 counts ( approx. 11 bit ), but for 4 ½ DPM ( approx. 14 bit ) you may need to have trimpots2 in place of R3, R4, R5 & R6 gain selection resistors to properly calibrate to required accuracy but for testing or trials use 1% 100ppm MFR resistors but the errors will be around 1%.

Precision Attenuator with digital control

b. Output

Output connect to DPM 7107/7135 or any other A/D Convertor or OpAmp Stage. Use a buffer at output if output has to be loaded by a value less than 1Meg. Use an inverting buffer if input leads have to have polarity where gnd is -In. See DACT0009 for details.

c. 4052 CMOS Switch

The 4052/51/53 Analog Multiplexers have an on Resistance of around 100E the highlight of the circuit is that the CMOS on resistance comes in series with the opamp output source resistance, which produces no error at output.

Digital Control Options

A and B can be controlled by I/O port of uC, like 80C31 so that the uC can Control gain. A and B can be given to Counters like 4029/4518 to scroll gain digitally. A and B can be connected to DIP switch or thumbwheel switch.

Precision Amplifier with Digital uC Control

When Instruments are designed a analog front end is essential and also as most equipment have digital or microcontroller interface the analog circuit needs to have digital access. The Circuits DACT0008 and DACT0009 are both useful in building instruments which have digital control.
This circuit DACT0009 is similar to DACT0008 but gains of upto 100 can be realized in this configuration, this is useful for signal conditioning of low mV outputs of transducers. The gain selection resistors R3 to R6 can be selected by the user and can be anywhere from 1K to 1M and can also be trimpots for obtaining gains as required by user, the resistor values shown are for decade gains e.g. for an auto ranging DPM.

Precision Amplifier with Digital Control

R1 and C1 reduce ripple in input and also snubs transients, ZD1 and ZD2 Zeners clamp input to +/- 4.7V the input current is limited by R1 lastly C1 and C2 are decoupling capacitors. The OpAmp U3 is used to increase the input impedance so that very low mV inputs are not loaded on measurement, the user can terminate the inputs with a resistor of his choice like 10M or 1M to avoid floating of the inputs when no measurement is being made. U5 is used as an Inverting buffer to restore polarity of the input and U4 is used as a buffer on the output of 4052 because loading it by resistance of value less than 1M will cause an error. An alternative is use R7 = R8 =1M and remove U4 but this may not be ideal. Gains of greeter than 100 may not be practical because at 100 gain itself a 100uV offset will be around 10mV at the output (100uV*100) this can be trimmed using the offset null option in the OP07, connect a trimpot between 1 and 8 and connect wiper to +5.

Precision Amplifier with Digital Control

For better performance use ICL7650 ( not pin compatible ) instead of OP07 and use +/- 7.5V instead of +/-5V supply.

Eight steps for gain or attenuation can be added by using two 4051 and by using Pin 6 Inhibit on 4051/52 limitless steps can be added by cascading many 4051,52,53 as Pin 6 works like a chip select.

Some extended applications of this circuits are……. Error correction in Transducer amplifiers by correcting gain. Auto ranging in DMM. Sensor selection or Input type selection in Process control. Digitally Preset power supplies or electronic loads. Programmable Precision mV or mA sources. PC or uC or uP based instruments. Data loggers and Scanners.

Digital gain control of Opamp.

The gain of U1 can be controlled by a digital binary 1248 nibble at ABC. The gain at digital 000 is unity or 1 and the gain at various stages are set by 4051.

Precision Attenuator with Digital Control – delabs

There are eight different gains as the steps of gain resistor network is chosen by 4051. The on resistance of 4051 channel around 100E gets added to U1 pin 2 internal impedance.

Digital gain control of Opamp

Auto ranging 4-1/2 Digit Digital Voltmeter – delabs

You can use separate resistor networks with trimpots for each channel if you require but keep the networks total burden on U1 pin 6 to around 10K, not less than than. You can use this to set the gain of a amplifier with the help of a microcontroller.

Interface a uC to PC RS232 with MAX232A

This is the standard configuration on how to Interface a uC like 8051 to PC RS232 with MAX232A. The UART or Serial port was not present in 8049/8749 chips which were the ancestors of 8051/8031. Pages of code were needed to make a software UART in MCS-48. The 8051 integrated the hardware UART and short commands made it tick. The most important innovation which made uC popular was the C in 80C31. C is for CMOS. This made the chip work cooler and work on even batteries and small power supplies.

80C51, SBC, Firmware and Circuits

The 8749 and 8751 are the UV EPROM type of uC. With limited erase/write cycles. The FLASH revolution changed every thing, you could update firmware over a phone line modem. Even without Ethernet, the firmware could be updated by making every embedded device a node on the EPABX. Now TCP/IP and Wi-Fi makes it all very easy.

Interface a uC to PC RS232 with MAX232A
Read also –

555 watchdog for uC and uP systems

When the microcontroller hangs due to a spike, EMI or RFI etc. the 7555 will reset the uC, if proper power supply design is done above circuit can also give a clean power on reset, the above circuit you should modify to suit your design.

80C39-8749 MCS-48 Examples and code

Better still use a uC with watchdog built in like some atmel chips, or use the watchdog chips from maxim which can also do RAM battery management.

The circuit was developed over a old TI application note, 7555 i think fairchild may be making it, 7555 is CMOS version of 555 timer, advantage of 7555 is that it can go to higher frequency, low power consumption, the disadvantage is its output drive mA is not as good as 555. now why i put it here was that you can see how charge and discharge paths are separated with diodes.

555 watchdog for uC and uP systems

See Larger Circuit. 555 Watchdog
Edit the circuit eagle cad file del00013.zip,

RS232 with Opto-Isolation

I had to once interface an high voltage circuit to PC, The uC had to communicate thru RS232–Comm port–Serial Port.

Part of the 80C31 8051 SBC

Even though i had isolation at the sensors and actuators to make doubly sure the PC also has been isolated. There are chips that are available for this purpose, The circuit above is built with discrete and passive components except for the opto 4N35. You can use MCT2E and CNY17-3 Optos too. For MCT2E some tweak may be needed as current transfer ratio is 20, for the other two CTR is 100 so above design will work.
RS232 with Opto-Isolation

The circuit derives power from PC but does not load the PC supply. Any voltage above 5V applied to the PC connectors may lead to damage of motherboard in PC. Old PCs were more vulnerable but PCs today maybe a bit rugged at the Ports. Due to internal current limits and clamping.

The VCC, VDD and Agnd are derived from PC no other power needs to be applied on PC side of opto. On uC side of opto the uC power supply lines +5 and gnd has to be used. There is no copper link between the two sides and depending on opto a 1KV isolation is possible if PCB is well designed. The PCB should show the visual isolation above and components should be laid on separate areas of PCB to prevent creepage.

The LEDs are to indicate the port activity Rx and Tx, they are not required once testing is over. The circuit can be simpler, but this worked for me and it is not tested at very-high buad rates.

The levels of RS232 are not TTL like 0-5 we have both polarities +10 and -10. The circuit has to change that to drive the Opto Leds.

RS232 software. Understanding RS232 Serial Port Communication.

Voltage to Frequency Converter AD Interface

This is the Analog front end of the 80C39 Process Controller. The analog input is protected by a Zener barrier, low leakage. You could use clamping diodes too.

The non-inverting low-offset amp offers high input impedance. After further amplification it reaches the VCO LM331. The pulse train from the VCO reaches the uC port and is gated and measured by the MCS48 firmware. The voltage is deduced from the Frequency or Pulse width.

Voltage to Frequency Converter AD Interface

You can get a resolution near to a 8-10 bit A/D converter. It does not work for negative voltages. It is a low cost Voltmeter or Process Display solution.

80C39 and MCS48 based Process Controller is the main circuit that has the LED 7 segment display for output and push keys for input.