LED Voltage Level Indicator

This circuit is derived from a Siemens Application Note 1974. This circuit uses common components of today.

The circuit is here as it is of high educational value. I have not tested it. You can ‘simulate and test’ or ‘wire it up and try’ and let me know how it worked. The Circuit is also a simple analog to digital converter. You can use optos in place of LEDs.

Battery Level Indicator

T1 and T2 make a differential amplifier. T3, T4 and T5 driving the LEDs are comparators.  When input voltage is increased T1 is turned on which leads to more base current for T3 which Lights LED1. When input voltage is less T2 turns on as it gets a better base current from P3 which turns on LED2 via T4. When both LEDs are off T5 gets biased as no drop across R5 which lights the LED3 thru T5 hopefully.

LED Voltage Level Indicator

What you need to know is a small current Ib thru the base-emitter path in the direction of the emitter arrow will lead to a large Current Ic thru the emitter-collector path in direction of arrow. Ic = B * Ib where B – beta is the DC current gain, it could be 100-400

Fluid or Water Level with Reed Relays 

Beta is different in each transistor you buy and varies with the test conditions and even with temperature and age. The LED1 and LED2 will indicate above or below Limits set by P2 and P1. The Limit Threshold itself is set at P3 i think. LED3 will light when Hi LED and Lo LED both are off.

The applications of this circuit are FM tuning indicator, Stereo Balance Indicator (Wire T2 like T1 then we get two channel inputs) and battery level indicator.

Constant Current Source for LED

This article will explain the way a simple transistor based current source is designed, this will give an idea on how some components can be used in a practical way to make the circuit do some function, the objective is not design but to become familiar with the basic ideas.

Design of a Constant Current Source

In the circuit the LED is used as a reference so to keep it cool a 2.2K is chosen. (20V – 1.6V) / 2.2K = 8.3mA on the high side and when voltage is 10V the current will be 3.8mA min.

Constant Current Source for LED

You should know that the LED forward drop can change with ambient light as it is photo sensitive and will vary with temperature.

The circuit can be improved by using a zener in place of the LED or better still a temperature compensated reference like LM336.

Operating Current of LM336 is 400uA to 10mA, 20V The max. voltage 20V / 3.3K = 6mA. so within limits. Then you can compute the rest, wire it up to see if your design works.

Simple High speed data switch

This circuit is a small representation of a very low cost printer sharer. It has no Active Devices only diodes.

Simple High speed data switch

Pot the product in epoxy with a black dye, they serve the purpose. Output impedance of this circuit is high, sink is 220K source is 3.9K+ so use some buffers or drivers at Output. If Buffers are omitted, then fix this unit on the printer port connector of Computer.

when Enable A is at float-high impedance or low the output O1-O4 is not influenced by A1-A4 inputs. If Enable A is made logic high or 5V then A1-A4 is available at O1-O4.

By turning Enable A or Enable B high, you can route the data A1-A4 or B1-B4 to the output O1-O4, you can also mix data and you can expand to any number of input sets or data width. 1N4148 is fast, 4nS, that makes this data switch quite fast. This circuit cannot drive long printer cables without drivers. They will load the output.

Edison Bulb Life Extender

The Edsion Filament lamp may be less popular, but it is the most cost-effective light even today. It is very affordable, The light is soothing to the eyes and best of all gives a warm feeling.

Edison Bulb Life Extender

Sometimes due to the mains being restored when bulb is on, or a rapid flick of switch, blows it. This may be due to the cold filament resistance which is low, allowing a huge inrush current.

LED Lighting – The Future is Here

The problem can be solved with a soft start based on thyristor or mosfet using PWM etc. The circuit here is a low cost solution which may help a bit in reducing the inrush cold current Protection from long duration high voltages is also required but will make circuit more complex.

Now why would anyone spend for a R-C network for a bulb, you could as well buy a new bulb. But I once got a back sprain while replacing a bulb in a hurry, So the price of the bulb alone is not the issue.

CFL Lamps and Simple Inverter

The two diodes 1A form a AC path with a switching delay of diodes, The R-C network is for soft start. The Varistor-Thermistor has a cold resistance 4.7E which reduces as it warms up. If switch is flicked rapidly or power fluctuates, then varistor cannot help as its response is slow. The 10E resistor ceramic fusible wirewound resistor and C1 does the job of absorbing .

This circuit has not been tested for long times at multiple places, so i am not sure of its performance.

Mains Voltage Indicator with a LED

This is a mains 230V AC voltage indicator and is a LIVE CIRCUIT, so take care. The Resistor has to be a fusible ceramic wire wound and the capacitor 630V AC or higher capacity.

More at my Home Made Circuits.

Mains Voltage LED Indicator

This circuit has been drawn from my memory and i have not tried it out again, just see if it is ok and then try. You should use the fuse of 100mA a slow blow if you want but it is very important. This circuit has to be enclosed in a plastic sealed enclosure to avoid contact.

Mains Current Indicator with a LED

This is a mains 230V AC load current indicator and is a LIVE CIRCUIT, so take care. The Resistors have to be a fusible ceramic wire wound.

More at Mains Voltage and Power Circuits

Mains Current LED Indicator

This circuit has been drawn from my memory and i have not tried it out again, just see if it is ok and then try. You should use the fuse of 1A a slow blow if you want but it is very important. You can design the shunt R3 and Fuse rating as required by your load.

Note that this circuit is to be put in series with the load like an ammeter. If you put it across the supply like a voltmeter it will fuse out or burn out. This circuit has to be enclosed in a plastic sealed enclosure to avoid contact.

Isolated dual power supply from 5V

This is a unregulated supply for low power circuits. You may be able to regulate the outputs with zeners or small regulators like 78L05.

The transformer can be hand wound in a mini ferrite pot core. you can use 2N2222 or any other fast transistor. The transformer should have 1KV isolation. The dot polarity of TR1 should be properly observed, else it may fail to oscillate or give output.

Simple WorkBench Dual Power Supply – del20033

Diode should be fast recovery type, for less than 100mA use 1N4148. transformer, pri-20-20, sec-60-60, a SWG-AWG to suit the current you

design for, any fast switching transistor would work, no regulation, use regulators like 78L12 if you want, circuit like multivibrator used for flashing LED lights.

Isolated dual power supply from 5V

The Source file in CadSoft EAGLE format is here del00010.zip