Voltage to Current Convertor using LM723

his Circuit converts a voltage control output from a Process Controller to be converted into a Current Control if the AC-Drive or Valve needs a Current Control Signal.

Significance of Current Loop 4 to 20 mA Standard

Voltage to Current Convertor using LM723

This is a three wire voltage to current loop converter. The 1-5 V DC is attenuated and fed to pin 5 LM723 opamp section which tries to maintain the same voltage at pin 10 across the 10 E, thereby producing a open collector constant current sink proportional to the 1-5V input. By trimming the attenuator you can scale-calibrate 1-5V input to 4-20mA output for looping many instruments in series, like a controller, recorder or PLC. With a supply voltage upto 24V, three instruments can be looped. The connection to pin 6 is required to convert 0-1 input to 4-20mA.

All the transmitter circuits can be seen here. Industrial Process Control Circuits

This circuit was designed by me in the eighties, the 555 was for negative supply, The whole thing went into the anodized cast aluminuim head of a sensor.

How 4-20mA Works

InfraRed LED Flasher for Optical Switch

This circuit is used to detect objects by reflected infrared light. It can be built into a cylindrical enclosure just like an inductive proximity switch.

Part of – InfraRed Detector for Proximity Switch

This is also useful as a level detector for colored liquids like oil. This has some immunity to ambient sunlight as it detects ac pulses.

Infrared Optical Proximity Switch

IC 555 is used as an astable oscillator and it flashes the Infra red LED D1 at a high speed, The object close to this LED reflects the light along with the ambient light which may also be sunlight.

Infra Red LED 555 Flasher

IR Led’s and Diodes

The types available are various and polarity hard to detect even photo IR transistors can be used. The IR Led can be tested in diode mode of a DMM (battery should be in good condition) it should give around 1.1V drop in proper polarity.

Se a Related circuit here Optical Obstacle Switch.

An IR detector diode or photo diode can be tested in the same way the drop will be 0.5V at 1 feet from a 60W lamp (no sunlight), closing the IR photo diode with your hand will be an over range on DMM this will happen on proper polarity. the photo diode shows around 10k ohm resistance in daylight and in Mega ohms when covered also the photo diode detects light on reverse bias and used like that.

555 watchdog for uC and uP systems

When the microcontroller hangs due to a spike, EMI or RFI etc. the 7555 will reset the uC, if proper power supply design is done above circuit can also give a clean power on reset, the above circuit you should modify to suit your design.

80C39-8749 MCS-48 Examples and code

Better still use a uC with watchdog built in like some atmel chips, or use the watchdog chips from maxim which can also do RAM battery management.

The circuit was developed over a old TI application note, 7555 i think fairchild may be making it, 7555 is CMOS version of 555 timer, advantage of 7555 is that it can go to higher frequency, low power consumption, the disadvantage is its output drive mA is not as good as 555. now why i put it here was that you can see how charge and discharge paths are separated with diodes.

555 watchdog for uC and uP systems

See Larger Circuit. 555 Watchdog
Edit the circuit eagle cad file del00013.zip,

Pulse width modulation using 555

IC1 astable gives a fixed square wave at pin 3, C1 and R1 derive uS trigger pulses from IC1 and this will trigger IC2 monostable or single shot, the voltage at pin 5 of IC2 will change the pulse width output of IC2, to get it working all the three RC combinations have to be figured out.

Optical Obstacle Switch.

You can even build a small SMPS with this or even control the temperature of your soldering iron using the SSR solid state relay circuits in power section, then you need to think and design the cycle time of a soldering iron heat control system, it will be in seconds but then above circuit is running at audio frequencies, then you have to work that out yourself..

Pulse width modulation using 555

Fixed frequency Variable duty cycle with 555

This circuit is based on a very old application note from exar, in this the frequency is fixed by IC1 and IC2 -P1 controls the duty cycle. you need to compute the R and C values to get what you need,  LM555 data sheet.

You have to study the circuit and do something more innovative perhaps, just copying is ok for learning but it will get you nowhere, so learn and then innovate, the eagle circuit is given below so you can learn by editing it, also design a PCB with it, and you can even make a PCB at home to learn, but it is always good to get PCBs done by a PCB vendor, but you should understand his problems, then you will design well, so make a few PCBs.

Fixed frequency Variable duty cycle with 555

Edit the circuit eagle cad file del00012.zip

Frequency Divider 74HCT4040

U1 7555 is a CMOS version of 555. The 555 here is in Astable Oscillator mode, C1 and C4 are decoupling capacitors 0.1uF value, ceramic disc.

Mixed and Interface Circuits

The output is around 100kHz, If C3 is plastic or mica the frequency output will be stable with temperature. It is better to use a crystal oscillator.

Frequency Divider 74HCT4040

The 555 output is fed to clock input of 4040, the output of 555 will be a square wave, on every high to low transition (falling edge or negative transition) the counter increments by one and the output is 12 bit binary.

Read more at my Digital Timers, Counters and Clocks

If input frequency is F the final output at Q12 is F/4096. The period T = 1/F.
If you make the 555 run at 1Hz, C3 around 7uF, Then this circuit becomes a long duration timer, the Q12 period will be 4096 seconds or 68 minutes.

OR gate with two 555

This shows how to OR gate two 555, when one 555 cycles at a low frequency a valve turns on an off, the second 555 stretches the ON duration of the pulse with a diode OR gate.

 Digital Timers Counters and Clocks

OR gate with two 555

The OR output uses sample and hold to get the stable analog data from a sensor after the actuator has gone OFF, this ensures correct reading.

555 is a fundamental Mixed Signal Circuit as it can be made into a VCO using Pin-5. If you see old exar databooks, you can see 555 and PLL and Tone decoders all applications compiled in one base. I feel the Venerable Signetics 555 “Architecture” and Intersil ICL8038 ‘CMOS’ were inspiration behind early communication chip designs, Moving from Bakelite Telephones to Compact Push Button Electronic Phones and more.