• Ads

Constant Current Source for LED

This article will explain the way a simple transistor based current source is designed, this will give an idea on how some components can be used in a practical way to make the circuit do some function, the objective is not design but to become familiar with the basic ideas.

Design of a Constant Current Source

In the circuit the LED is used as a reference so to keep it cool a 2.2K is chosen. (20V – 1.6V) / 2.2K = 8.3mA on the high side and when voltage is 10V the current will be 3.8mA min.

Constant Current Source for LED

You should know that the LED forward drop can change with ambient light as it is photo sensitive and will vary with temperature.

The circuit can be improved by using a zener in place of the LED or better still a temperature compensated reference like LM336.

Operating Current of LM336 is 400uA to 10mA, 20V The max. voltage 20V / 3.3K = 6mA. so within limits. Then you can compute the rest, wire it up to see if your design works.

Using Thermocouple with DMM or DVM

In the circuit, use only metal film resistors (MFR) of 1 per cent tolerance, as this is an instrumentation application. Power supply should be a stable +5V, -5V supply, for which one can use 7805 and 7905 regulators.

The inputs TC+ and TC- terminals should go to a 4-way barrier terminal block, the 2 extra terminals are used to mount TH1 Cu thermistor. This forms an isothermal block, which is good enough.

A simple way to make a TH1 Cu thermistor, is to take a 1 Meg-ohm 2W resistor as a former and wind 2 meters of 46 SWG enameled copper (Cu) wire (5.91 ohm/meter) over it. This gives a 12-ohm value. Terminate wire ends on resistor leads.

Thermocouple Temperature using DPM or DMM

Test and Calibration –

For calibration, you will need a DMM-DPM and a milli-volt source (as shown in the Fig.). First connect source to terminals TC+ and TC-, then set source to 0.00 mV (verify with DMM for zero). The output across +out and -out (use DMM) terminals must be mV representing the room temperature (RT). For example, if RT is 30° C (use a glass thermometer) then +out should be 30mV at 0mV input. Adjust VR1 till 30mV is read at +out terminal. This is ‘zero cal’.