Analog Mux for Data Acquisition Systems

Here is a 4-20 mA In/Out Analog Mux with Cascade option. This is a simple circuit i designed to make a Automation System within a budget.

Mixed Circuits Analog with Digital

Analog Mux using 4051

This takes 4-20mA from many Transmitters and gives out just one 4-20 mA output. The Mux is done with a digital byte or word. This is a slow scanner as process is slow, that way many analog inputs can be multiplexed and sent into one analog input of a D/A. In near real time systems a faster mux could be used or mux totally avoided. This was made in some numbers, so the pcb is better than others.

4-20mA Multiplexer Circuit – pdf

Simple High speed data switch

This circuit is a small representation of a very low cost printer sharer. It has no Active Devices only diodes.

Simple High speed data switch

Pot the product in epoxy with a black dye, they serve the purpose. Output impedance of this circuit is high, sink is 220K source is 3.9K+ so use some buffers or drivers at Output. If Buffers are omitted, then fix this unit on the printer port connector of Computer.

when Enable A is at float-high impedance or low the output O1-O4 is not influenced by A1-A4 inputs. If Enable A is made logic high or 5V then A1-A4 is available at O1-O4.

By turning Enable A or Enable B high, you can route the data A1-A4 or B1-B4 to the output O1-O4, you can also mix data and you can expand to any number of input sets or data width. 1N4148 is fast, 4nS, that makes this data switch quite fast. This circuit cannot drive long printer cables without drivers. They will load the output.

5V -1A Power Supply using LM2575

A Power Transistor which is having a drop of 4 Volts across it and passing 3 amps thru it, may dissipate around 12 Watts of Heat, This is the problem in Series Regulators. While a Saturated Transistor or Mosfet with 1 Volts across and 3 Amps Thru will be just 3 Watts. But then a fully on transistor or mosfet cannot be controlled or regulated, for that we turn it ON and OFF very fast so that the right amount of current or voltage is delivered.

Power Electronic Circuits  

5V -1A Power Supply using LM2575

The way this is done is PWM – Pulse Width Modulation. In this the mosfet or transistor is switched ON-OFF at say 100 kHz, but the ON duration is varied to control the output. The longer the duration of ON time more energy or punch is transferred. Switching losses will be present depending on how fast the rise and fall times of the pulses are.

The Pulsed AC or Chopped DC can be smoothed to the Average with Inductors and Capacitors. The reactive pulses of the Inductor has to be absorbed by a Schottky Rectifier 1N5817 — 20V-1A fast switching diode with low switching losses.

This circuit is derived from an application note of LM2575, It is a Power Switching Regulator from National Semiconductor The details are here LM2575

3-1/2 Digit ICL7107 DPM Digital Panel Meter

This is a Digital Panel Meter based on ICL7107. This was the workhorse Digital Readout chip before Low power uC designs were developed. Even now it is the easiest way an analog parameter can be displayed in an instrument.

Instrumentation and Measurement Circuits

3-1/2 Display is just enough resolution for recording process data or troubleshooting equipment. With 4-1/2 you notice the problems of thermoelectric EMF of probes and connectors. That is one reason gold plating is used another being low contact resistance. In 4 1/2 the reading can change due to contact resistance too, if the input impedance of the analog signal conditioning is low or the protection diodes, RC filter caps are leaky.

ICL7107 DPM When you measure an analog parameter from a sensor; you attenuate or amplify it, to scale to the A/D converter range. You also need to protect or isolate the analog front end from high energy mis-connections, which will happen during field use. The operator should not get injured from any high energy leakage while measuring.

Resolution is the finest detail you can enumerate in a parameter or object. You can say the crowd was 3000 or 4000 people. Here 1000 is the resolution, finer data does not matter here. You would also hear things like, there were 80 to 90 boys in that classroom. 10 is the resolution there.

Accuracy is how precise a statement or number is. If there was 85 boys in that class, the above statement is accurate. If there was 65 boys, the measuring method or process needs calibration or examination.

In this circuit, the plastic caps should be of very low leakage. Multilayer plastic caps are good for instrumentation.

Mains Voltage monitor using LM3914

This Circuit helps in the monitoring of mains supply voltage. It does not use a isolation step down transformer. This has to be constructed only by skilled people with knowledge of safety requirements.

C1 limits the current and drops most of the voltage. The zener regulated supply is for the chip. C2 can be raised to 220uF or more if required. The bar mode display may consume more power.

Mains Voltage Power Transformers 

R2-R3-R5-R6 form a voltage divider to get a sample of the input voltage, D11-C3 get the DC value.

Adjust R5 preset with a log Plastic tweaker to get the 5th led to just turn on when input voltage is at 138V AC. This has to be done after PCB is put in a sealed fire-retardant-plastic or epoxy box. drill a hole in box for plastic tweaker.

National LM3914 – Dot Bar Display Driver
This Circuit is Not a Tested Design. It is an Idea for study

Mains Voltage monitor using LM3914

Warning : This Circuit is Mains Operated without Isolation Transformer and will give lethal electric shock if touched when the circuit is turned on. Test circuit only with DC 9V Bench Power Supply to try it out. Do not use 230V AC.

Regulated High Voltage Power Supply

The Circuit below is a paper design and not tested. It can be used for education and information, this can help you make your own design. Please do not just wire it up and expect it to work.

Regulated High Voltage Power Supply

Now let me see if i can explain the circuit, This is a regulated AC power supply. This circuit uses the Mosfet to turn off when voltage goes beyond a reference point. That means it just chops the Sine wave above a point, that also implies that the output may not be pure sine and may have harmonics. The Transformer if well designed may smoothen the chops. Even a Series Inductor or Resonant Circuits may reduce harmonics.

The opto coupler 4N50 Provides isolation and good Current Transfer Ratio. That may mean you may not get a shock and that even a small current signal in Opto-LED will give a saturated or Low Impedance in Opto-Transistor. The Mosfet is used like a Impedance Control switch turned On-Off by Opto. The Optocoupler diode is controlled by the Opamps which work Closed loop. The transformer output is compared with reference to drive opto-led.

This Circuit is based on Teledyne Solid State data book application note. They may not be making these parts anymore but they are available from others.

Regulated High Voltage Power Supply – del20032

Digital gain control of Opamp.

The gain of U1 can be controlled by a digital binary 1248 nibble at ABC. The gain at digital 000 is unity or 1 and the gain at various stages are set by 4051.

Precision Attenuator with Digital Control – delabs

There are eight different gains as the steps of gain resistor network is chosen by 4051. The on resistance of 4051 channel around 100E gets added to U1 pin 2 internal impedance.

Digital gain control of Opamp

Auto ranging 4-1/2 Digit Digital Voltmeter – delabs

You can use separate resistor networks with trimpots for each channel if you require but keep the networks total burden on U1 pin 6 to around 10K, not less than than. You can use this to set the gain of a amplifier with the help of a microcontroller.